What is the Difference Between DirectAccess and Always On VPN?

Always On VPN Device Tunnel Configuration Guidance Now AvailableDirectAccess has been around for many years, and with Microsoft now moving in the direction of Always On VPN, I’m often asked “What’s the difference between DirectAccess and Always On VPN?” Fundamentally they both provide seamless and transparent, always on remote access. However, Always On VPN has a number of advantages over DirectAccess in terms of security, authentication and management, performance, and supportability.

Security

DirectAccess provides full network connectivity when a client is connected remotely. It lacks any native features to control access on a granular basis. It is possible to restrict access to internal resources by placing a firewall between the DirectAccess server and the LAN, but the policy would apply to all connected clients.

Windows 10 Always On VPN includes support for granular traffic filtering. Where DirectAccess provides access to all internal resources when connected, Always On VPN allows administrators to restrict client access to internal resources in a variety of ways. In addition, traffic filter policies can be applied on a per-user or group basis. For example, users in accounting can be granted access only to their department servers. The same could be done for HR, finance, IT, and others.

Authentication and Management

DirectAccess includes support for strong user authentication with smart cards and one-time password (OTP) solutions. However, there is no provision to grant access based on device configuration or health, as that feature was removed in Windows Server 2016 and Windows 10. In addition, DirectAccess requires that clients and servers be joined to a domain, as all configuration settings are managed using Active Directory group policy.

Windows 10 Always On VPN includes support for modern authentication and management, which results in better overall security. Always On VPN clients can be joined to an Azure Active Directory and conditional access can also be enabled. Modern authentication support using Azure MFA and Windows Hello for Business is also supported. Always On VPN is managed using Mobile Device Management (MDM) solutions such as Microsoft Intune.

Performance

DirectAccess uses IPsec with IPv6, which must be encapsulated in TLS to be routed over the public IPv4 Internet. IPv6 traffic is then translated to IPv4 on the DirectAccess server. DirectAccess performance is often acceptable when clients have reliable, high quality Internet connections. However, if connection quality is fair to poor, the high protocol overhead of DirectAccess with its multiple layers of encapsulation and translation often yields poor performance.

The protocol of choice for Windows 10 Always On VPN deployments is IKEv2. It offers the best security and performance when compared to TLS-based protocols. In addition, Always On VPN does not rely exclusively on IPv6 as DirectAccess does. This reduces the many layers of encapsulation and eliminates the need for complex IPv6 transition and translation technologies, further improving performance over DirectAccess.

Supportability

DirectAccess is a Microsoft-proprietary solution that must be deployed using Windows Server and Active Directory. It also requires a Network Location Server (NLS) for clients to determine if they are inside or outside the network. NLS availability is crucial and ensuring that it is always reachable by internal clients can pose challenges, especially in very large organizations.

Windows 10 Always On VPN supporting infrastructure is much less complex than DirectAccess. There’s no requirement for a NLS, which means fewer servers to provision, manage, and monitor. In addition, Always On VPN is completely infrastructure independent and can be deployed using third-party VPN servers such as Cisco, Checkpoint, SonicWALL, Palo Alto, and more.

Summary

Windows 10 Always On VPN is the way of the future. It provides better overall security than DirectAccess, it performs better, and it is easier to manage and support.

Here’s a quick summary of some important aspects of VPN, DirectAccess, and Windows 10 Always On VPN.

Traditional VPN DirectAccess Always On VPN
Seamless and Transparent No Yes Yes
Automatic Connection Options None Always on Always on, app triggered
Protocol Support IPv4 and IPv6 IPv6 Only IPv4 and IPv6
Traffic Filtering No No Yes
Azure AD Integration No No Yes
Modern Management Yes No (group policy only) Yes (MDM)
Clients must be domain-joined? No Yes No
Requires Microsoft Infrastructure No Yes No
Supports Windows 7 Yes Yes Windows 10 only

Always On VPN Hands-On Training

If you are interested in learning more about Windows 10 Always On VPN, consider registering for one of my hands-on training classes. More details here.

Additional Resources

Always On VPN and the Future of Microsoft DirectAccess

5 Important Things DirectAccess Administrators Should Know about Windows 10 Always On VPN

3 Important Advantages of Windows 10 Always On VPN over DirectAccess

DirectAccess Manage Out and System Center Configuration Manager (SCCM)

The seamless and transparent nature of DirectAccess makes it wonderfully easy to use. In most cases, it requires no user interaction at all to access internal corporate resources while away from the office. This enables users to be more productive. At the same time, it offers important connectivity benefits for IT administrators and systems management engineers as well.

Always Managed

DirectAccess Manage Out and System Center Configuration Manager (SCCM)DirectAccess clients are automatically connected to the corporate network any time they have a working Internet connection. Having consistent corporate network connectivity means they receive Active Directory group policy updates on a regular basis, just as on-premises systems do. Importantly, they check in with internal management systems such as System Center Configuration Manager (SCCM) and Windows Server Update Services (WSUS) servers, enabling them to receive updates in a timely manner. Thus, DirectAccess clients are better managed, allowing administrators to more effectively maintain the configuration state and security posture for all their managed systems, including those that are predominantly field-based. This is especially crucial considering the prevalence WannaCry, Cryptolocker, and a variety of other types of ransomware.

DirectAccess Manage Out

DirectAccess Manage Out and System Center Configuration Manager (SCCM)When manage out is configured with DirectAccess, hosts on the internal network can initiate connections outbound to remote connected DirectAccess clients. SCCM Remote Control and Remote Desktop Connection (RDC) are commonly used to remotely connect to systems for troubleshooting and support. With DirectAccess manage out enabled, these and other popular administrative tools such as VNC, Windows Remote Assistance, and PowerShell remoting can also be used to manage remote DirectAccess clients in the field. In addition, enabling manage out allows for the proactive installation of agents and other software on remote clients, such as the SCCM and System Center Operation Manager (SCOM) agents, third-party management agents, antivirus and antimalware software, and more. A user does not have to be logged on to their machine for manage out to work.

IPv6

DirectAccess manage out requires that connections initiated by machines on the internal network to remote-connected DirectAccess clients must be made using IPv6. This is because DirectAccess clients use IPv6 exclusively to connect to the DirectAccess server. To enable connectivity over the public IPv4 Internet, clients use IPv6 transition technologies (6to4, Teredo, IP-HTTPS), and IPv6 translation components on the server (DNS64 and NAT64) enable clients to communicate with internal IPv4 resources. However, DNS64 and NAT64 only translate IPv6 to IPv4 inbound. They do not work in reverse.

Native or Transition?

It is recommended that IPv6 be deployed on the internal network to enable DirectAccess manage out. This is not a trivial task, and many organizations can’t justify the deployment for just this one specific use case. As an alternative, IPv6 can be configured with an IPv6 transition technology, specifically the Intrasite Automatic Tunnel Addressing Protocol (ISATAP). ISATAP functions as an IPv6 overlay network, allowing internal hosts to obtain IPv6 addresses and routing information from an ISATAP router to support manage out for DirectAccess clients.

ISATAP

When DirectAccess is installed, the server is automatically configured as an ISATAP router. Guidance for configuring ISATAP clients can be found here. Using ISATAP can be an effective approach to enabling DirectAccess manage out for SCCM when native IPv6 is not available, but it is not without its drawbacks.

• Using the DirectAccess server for ISATAP is only supported with single server DirectAccess deployments.
• Using the DirectAccess server for ISATAP does work when using Network Load Balancing (NLB) with some additional configuration, but it is not supported.
• Using the DirectAccess server for ISATAP does not work when an external load balancer is used, or if multisite is enabled.

ISATAP with Load Balancing and Multisite

It is technically possible to enable DirectAccess manage out for SCCM using ISATAP in load-balanced and multisite DirectAccess deployments, however. It involves deploying a separate ISATAP router and some custom configuration, but once in place it works perfectly. I offer this service to my customers as part of a consulting engagement. If you’re interested in restoring DirectAccess manage out functionality to support SCCM remote control, RDC, or VNC in load-balanced or multisite DirectAccess deployments, fill out the form below and I’ll provide you with more information.

Additional Resources

ISATAP Recommendations for DirectAccess Deployments
DirectAccess Manage Out with ISATAP Fails on Windows 10 and Windows Server 2016
DirectAccess Client Firewall Rule Configuration for ISATAP Manage Out
Video: Windows 10 DirectAccess in action (includes manage out demonstration)

DirectAccess DNS Records Explained

After installing and configuring DirectAccess with Windows Server 2012 R2, several new host records appear automatically in the internal DNS (assuming dynamic DNS is supported, of course). One of them is directaccess-corpConnectivityHost and the other is directaccess-WebProbeHost. These DirectAccess DNS entries are used by Windows 8 and later clients for connectivity checks at various stages of DirectAccess connection establishment.

DirectAccess DNS Records Explained

Figure 1 – DirectAccess DNS records for IPv4-only network.

DirectAccess DNS Records Explained

Figure 2 – DirectAccess DNS records for dual-stack IPv4/IPv6 network.

Here is a detailed description for each of these DirectAccess DNS entries.

directaccess-corpConnectivityHost – This DNS host record includes both A and AAAA records when deployed on IPv4-only networks. Its A host record resolves to 127.0.0.1, which is the IPv4 loopback address. Its AAAA host record resolves to an IPv6 address that is a combination of the DirectAccess NAT64 IPv6 prefix and 7F00:1 (the hexadecimal equivalent of 127.0.0.1). When DirectAccess is configured on a network with native IPv6, the directaccess-corpConnectivityHost DNS record will only include a single AAAA record resolving to ::1.

This host record is used by the DirectAccess client to determine if name resolution for the corporate namespace is working after the IPv6 transition tunnel (6to4, Teredo, or IP-HTTPS) has been established. It does this by attempting to resolve the hostname directaccess-corpConnectivityHost.<corp_fqdn> (e.g. directaccess-corpConnectivityHost.corp.example.net) to an IPv6 address that it expects (the organization’s NAT64 prefix + 7F00:1 or ::1). If it does not resolve, or resolves to a different address, the client will assume that the transition tunnel was not established successfully and, if possible, fall back to another IPv6 transition protocol and repeat the process until it is successful.

Note: The DirectAccess client does not attempt to connect to the IP address resolved by directaccess-corpConnectivityHost. It simply compares the IP address returned by the query to the expected address (NAT64 prefix + 7F00:1 or ::1).

directaccess-WebProbeHost – This DNS host record includes only A records and resolves to the IPv4 address assigned to the internal network interface of the DirectAccess server. If load balancing is enabled, this host record will resolve to the virtual IP address (VIP) of the array. For multisite deployments there will be directaccess-WebProbeHost A host records for each entry point in the organization.

This host record is used by the DirectAccess client to verify end-to-end corporate network connectivity over the DirectAccess connection. The client will attempt to connect to the directaccess-WebProbeHost URL using HTTP. If successful, the DirectAccess connectivity status indicator will show Connected.

If any of these DirectAccess DNS records are missing or incorrect, a number of issues may arise. If the directaccess-corpConnectivityHost host record is missing or incorrect, DirectAccess IPv6 transition tunnel establishment may fail. If the directaccess-WebProbeHost record is missing or incorrect, the DirectAccess connectivity status indicator will perpetually show Connecting. This commonly occurs when an external load balancer is used and a virtual server isn’t created for the web probe host port (TCP 80). In addition, these DirectAccess DNS entries are not static and may be deleted if DNS scavenging of stale resource records is enabled on the DNS server.