Always On VPN Proxy Server Configuration

Always On VPN Proxy Server Configuration

Web proxy servers are not as common today as they once were, but a few organizations still leverage them to provide secure Internet access for their employees. Commonly they are used to inspect and control Internet traffic and to enforce acceptable use policies. Some organizations may wish to extend this protection to Always On VPN clients in the field by enabling force tunneling. Administrators can define a web proxy server for Always On VPN connections globally for web traffic or individual websites or domains.

VPN Proxy

A VPN web proxy server can be defined when the Always On VPN user tunnel connection uses force tunneling. Although you can still configure a VPN web proxy server with split tunneling enabled, it will not work. It is only functional when force tunneling is in use.

Administrators can configure a VPN web proxy server using the Microsoft Endpoint Manager UI or custom XML deployed with Endpoint Manager or PowerShell. Administrators can define a VPN web proxy server explicitly, or a proxy automatic configuration (PAC) file can be specified.

Note: VPN proxy server settings only work when force tunneling is enabled. Force tunneling is an unsupported configuration for the device tunnel, making the global proxy server setting for the device tunnel unsupported.

Proxy Autoconfiguration

Perform the following steps to configure a VPN web proxy server with a PAC file in Endpoint Manager.

  1. Expand the Proxy section in the Configuration settings of the Always On VPN configuration profile.
  2. Enter the URL for the PAC file in the Automatic configuration script field. Be sure to include the port number in the URL when using a non-standard port.
  3. Leave the Address and Port number fields blank.
  4. Choose Enable or Disable from the Bypass proxy for local addresses drop-down list.

To configure a VPN web proxy server with a PAC file using custom XML, include the following code between the <VPNProfile> and </VPNProfile> tags in the Always On VPN XML configuration file.

Explicit Proxy

Perform the following steps to configure an explicit VPN web proxy server in Endpoint Manager.

  1. Enter the IP address, hostname, or fully qualified domain name (recommended) in the Address field.
  2. Enter the port number in the Port number field.
  3. Choose Enable or Disable from the Bypass proxy for local addresses drop-down list.

To configure an explicit VPN web proxy server using custom XML, include the following code between the <VPNProfile> and </VPNProfile> tags in the Always On VPN XML configuration file.

Namespace Proxy

Administrators can also define VPN web proxy servers on a per-namespace or per-hostname basis. Namespace VPN proxy servers can be helpful for scenarios where routing public websites over the Always On VPN connection is required. Most commonly, this is necessary because the public website restricts access to the IP address of the on-premises Internet gateway.

A namespace VPN proxy server is implemented using a Name Resolution Policy Table (NRPT) rule. At the time of this writing, a bug in Microsoft Endpoint Manager prevents administrators from deploying this option using the UI.

As you can see here, administrators can specify a proxy server as part of an NRPT rule in the Endpoint Manager UI. Notice this section of the UI validates the proxy FQDN correctly.

Always On VPN Proxy Server Configuration

However, when you try to save the configuration profile, Endpoint Manager returns the following error.

“Unable to save due to invalid data. Update your data then try again: ProxyServerUri must be a valid URL or be empty.”

Interestingly, when entering a URL such as http://proxy.lab.richardhicks.net:8080/ in the Proxy field, the Endpoint Manager UI accepts it and successfully validates. But according to the VPNv2 Configuration Service Provider (CSP) reference, the value must be entered as an IP address. A hostname or FQDN also works based on my testing. Entering a URL as shown in the example above will not work at all.

With that, the only way to implement a namespace VPN web proxy server is to use custom XML. To do this, include the following code between the <VPNProfile> and </VPNProfile> tags in the Always On VPN XML configuration file.

Include the leading “.” to specify the entire domain, as shown above. Omit the leading “.” to specify an individual host (for example, app.richardhicks.com). Repeat this section for each additional host or domain, as required.

Caveat

Unfortunately, the Microsoft Internet Explorer web browser is the only browser that functions with the namespace VPN web proxy server. All modern web browsers, including Microsoft Edge, ignore the namespace proxy setting entirely, which seriously limits this feature’s usefulness in most organizations today.

Workaround

If routing a public website over the Always On VPN tunnel is required, adding its IP address(es) to the Always On VPN connection’s routing table is needed. However, doing this presents some unique challenges, as public websites frequently have many IP addresses, which are often dynamically changing. Also, it is common for public websites to pull content from many different domains or use Content Delivery Networks (CDNs), making the problem of identifying which IP addresses to add to the Always On VPN connection’s routing table even more challenging. Further, administrators must update the client configuration each a public website’s IP address changes, adding significant management overhead.

Summary

Routing client Internet traffic through an on-premises web proxy server for Always On VPN clients works well when force tunneling is enabled. Administrators can explicitly define a web proxy server or use a proxy automatic configuration (PAC) file. All web browsers work without issue in this scenario. Using a namespace proxy is only effective when browsing with Microsoft Internet Explorer. All modern web browsers, including Microsoft Edge, ignore namespace proxy settings.

Additional Information

Windows 10 Always On VPN and the Name Resolution Policy Table (NRPT)

Windows 10 VPNv2 Configuration Service Provider (CSP) Reference

Windows 10 Always On VPN Client DNS Server Configuration

Always On VPN Updates for RRAS and IKEv2

Always On VPN Updates for RRAS and IKEv2

Many users have reported connection stability issues using Windows Server 2019 Routing and Remote Access Service (RRAS) and the IKEv2 VPN protocol. Specifically, there have been reports of random disconnects for which the connection cannot be re-established for an extended period. At the same time, other VPN connections may work without issue.

KB5003703

Microsoft has identified an issue in RRAS where the RemoteAccess service enters DoS protection mode, limiting incoming IKEv2 connection attempts. They released an update on June 15 (OS Build 17763.2028) that addresses this issue. Previously, the only workaround was to restart the IKEEXT service, which was highly disruptive if performed during peak hours.

No More Files

In addition, this update includes another Always On VPN-related fix for Windows 10 1809 clients. An Always On VPN user tunnel connection may fail, with an error message stating, “There are no more files.” The problem can occur after an existing user’s certificate is automatically renewed.

Additional Information

Microsoft Update June 15, 2021 KB5003703 (OS Build 17763.2028)

Always On VPN SSTP Security Configuration

Always On VPN SSTP Security Configuration

When using Windows Server Routing and Remote Access Service (RRAS) to terminate Always On VPN client connections, administrators can leverage the Secure Socket Tunneling Protocol (SSTP) VPN protocol for client-based VPN connections. SSTP is a Microsoft proprietary VPN protocol that uses Transport Layer Security (TLS) to secure connections between the client and the VPN gateway. SSTP provides some crucial advantages over IKEv2 in terms of operational reliability. It uses the TCP port 443, the standard HTTPS port, which is universally available and ensures Always On VPN connectivity even behind highly restrictive firewalls.

TLS Certificate

When configuring SSTP, the first thing to consider is the certificate installed on the server. A certificate with an RSA key is most common, but for SSTP, provisioning a certificate with an ECDSA key is recommended for optimal security and performance. See the following two articles regarding SSTP certificate requirements and ECDSA Certificate Signing Request (CSR) creation.

Always On VPN SSL Certificate Requirements for SSTP

Always On VPN ECDSA SSL Certificate Request for SSTP

TLS Configuration

Much like IKEv2, the default TLS security settings for SSTP are less than optimal. However, SSTP can provide excellent security with some additional configuration.

TLS Protocols

There are several deprecated TLS protocols enabled by default in Windows Server. These include SSLv3.0, TLS 1.0, and TLS 1.1. They should be disabled to improve security for TLS. To do this, open an elevated PowerShell window on the VPN server and run the following commands.

New-Item -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\SSL 3.0\Server\’ -Force

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\SSL 3.0\Server\’ -Name Enabled -PropertyType DWORD -Value ‘0’

New-Item -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.0\Server\’ -Force

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.0\Server\’ -Name Enabled -PropertyType DWORD -Value ‘0’

New-Item -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.1\Server\’ -Force

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.1\Server\’ -Name Enabled -PropertyType DWORD -Value ‘0’

Cipher Suites

Many weak TLS cipher suites and enabled by default in Windows Server. To further enhance security and performance, they can be optimized using a tool such as IIS Crypto. For example, consider prioritizing cipher suites that use ECDHE and GCM with ECDSA to improve security. Also, remove ciphers that use AES-256 to enhance scalability and performance.

Note: AES-256 does not provide any additional practical security over AES-128. Details here.

PowerShell Script

I have published a PowerShell script on GitHub that performs security hardening and TLS cipher suite optimization to streamline the configuration TLS on Windows Server RRAS servers. You can download the script here.

Validation Testing

After running the script and restarting the server, visit the SSL Labs Server Test site to validate the configuration. You should receive an “A” rating, as shown here.

Note: An “A” rating is not achievable on Windows Server 2012 or Windows Server 2012 R2 when using an RSA TLS certificate. A TLS certificate using ECDSA is required to receive an “A” rating on these platforms.

Additional Information

Always On VPN SSL/TLS Certificate Requirements for SSTP

Always On VPN ECDSA SSL Certificate Request for SSTP

Qualys SSL Labs Server Test Site

Always On VPN Protocol Recommendations for Windows Server RRAS

Microsoft SSTP Specification on MSDN

%d bloggers like this: