Always On VPN Client Routes Missing

Choosing an Enterprise VPN

When configuring Always On VPN for Windows 10 and Windows 11 clients, administrators may encounter a scenario where an IPv4 route defined in Microsoft Endpoint Manager/Intune or custom XML is not reachable over an established Always On VPN connection. Further investigation indicates the route is added to the configuration on the endpoint but does not appear in the routing table when the connection is active.

Routing Configuration

When split tunneling is enabled, administrators must define routes to IP networks that are reachable over the Always On VPN connection. The method of defining these routes depends on the client configuration deployment method.

Endpoint Manager

Using Microsoft Endpoint Manager, administrators define IP routes in the Split Tunneling section of the configuration settings for the Always On VPN device configuration profile. Routes are defined by entering the destination prefix and prefix size. In this example, the 10.0.0.0/8 and 172.21.12.0/21 IPv4 networks are defined for routing over the Always On VPN tunnel.

Custom XML

Using custom XML deployed using Microsoft Endpoint Manager, System Center Configuration Manager (SCCM), or PowerShell, routes are defined in the XML file using the following syntax.

Client Configuration

Validate the routing configuration has been implemented on the endpoint successfully by running the following PowerShell command.

Get-VpnConnection -Name <Connection Name> | Select-Object -ExpandProperty Routes

As you can see here, the IPv4 routes 10.0.0.0/8 and 172.21.12.0/21 are included in the client’s Always On VPN configuration, as shown below.

Missing Route

However, after establishing an Always On VPN connection, the 172.21.12.0/21 network is not reachable. To continue troubleshooting, run the following PowerShell command to view the active routing table.

Get-NetRoute -AddressFamily IPv4

As you can see above, the only IPv4 route in the VPN configuration added to the routing table is the 10.0.0.0/8 network. The 172.21.12.0/21 IPv4 route is missing.

Network Prefix Definition

IPv4 routes missing from the Always On VPN client’s routing table result from incorrect network prefix definition. Specifically, the IPv4 route 172.21.12.0/21 used in the example here is not a valid network address. Rather, it is a host address in the 172.21.8.0/21 network, as shown below.

The Get-Subnet PowerShell cmdlet is part of the Subnet PowerShell module. To install this module, run the following PowerShell command.

Install-Module Subnet

Resolution

Using the example above, enabling access to the 172.21.12.0/21 subnet would require defining the IPv4 prefix in the routing configuration as 172.21.8.0/21. The moral of this story is always validate routing prefixes to ensure they are, in fact, network addresses and not host addresses.

Additional Information

Always On VPN Routing Configuration

Always On VPN Default Class-based Route and Microsoft Endpoint Manager/Intune

Always On VPN Windows 11 Issues with Intune

Always On VPN RasMan Errors in Windows 10 1903

Since the introduction of Windows 11, there have been numerous reports of issues with Always On VPN when deployed using Microsoft Endpoint Manager/Intune. Specifically, administrators have been reporting that Always On VPN profiles are being deleted, then later reappearing. Obviously, this is highly disruptive to users in the field.

Causes

According to Microsoft, there are several causes for deleted VPN profiles.

Changes to an Existing Profile

Missing Always On VPN profiles commonly occurs when updating settings for an existing VPN profile applied to Windows 11 endpoints. In this scenario, the VPN profile is deleted but not immediately replaced. Synchronize the device with Microsoft Endpoint Manager/Intune once more to return the VPN profile.

Multiple Profiles

Issues with Always On VPN profiles may also occur if two new VPN profiles are applied to the endpoint simultaneously.

Remove and Replace

Removing and replacing an Always On VPN profile at the same time will also result in connectivity issues.

Reference: https://docs.microsoft.com/en-us/mem/intune/configuration/vpn-settings-configure

Workaround

There is no known workaround for these issues at this time. Microsoft is aware of the problem and is working on a fix, and until then, rolling out Windows 11 with Always On VPN should be avoided.

Additional Issues

There have been reports of other known issues with Windows 11 and Always On VPN. For instance, my PowerShell script that removes an Always On VPN connection doesn’t work with Windows 11. I’m working to resolve that issue as we speak.

Are you experiencing any issues with Always On VPN on Windows 11? Please share them in the comments below!

Always On VPN SSTP with Let’s Encrypt Certificates

Always On VPN SSTP Security Configuration

When configuring the Windows Server Routing and Remote Access Service (RRAS) to support Secure Socket Tunneling Protocol (SSTP) for Always On VPN user tunnel connections, administrators must install a Transport Layer Security (TLS) certificate on the VPN server. The best practice is to use a certificate issued by a public Certification Authority (CA). In addition, administrators should use a TLS certificate using Elliptic Curve Digital Signature Algorithm (ECDSA) for optimal security and performance.

Let’s Encrypt

Obtaining a public TLS certificate is not inherently difficult, nor is it expensive. However, Let’s Encrypt is a nonprofit public CA issues TLS certificates entirely for free. Always On VPN supports Let’s Encrypt TLS certificates, and installing a Let’s Encrypt certificate on the Always On VPN RRAS server is quite simple.

Pros and Cons

Using Let’s Encrypt certificates for Always On VPN has several significant advantages over traditional public CAs.

  • Cost – Let’s Encrypt certificates are free! No cost whatsoever.
  • Speed – Enrolling for a Let’s Encrypt certificate takes just a few minutes.
  • Trusted – Let’s Encrypt certificates are trusted by default in Windows 10 and Windows 11.

Let’s Encrypt is not without some drawbacks, however.

  • Lifetime – Let’s Encrypt certificates are only valid for 90 days.
  • Administration – Certificates must be redeployed frequently (every 90 days).
  • Security – PFX files (which include private keys) are left on disk by default.

It is possible to mitigate some of these drawbacks, though. For example, deleting PFX files after import can improve security. Alternatively, using a Certificate Signing Request (CSR) eliminates PFX files completely.

Also, it is possible to fully automate the Let’s Encrypt certificate enrollment and RRAS configuration process, which eases the administrative burden. And rotating certificates every 90 days could be considered an advantage from a security perspective! Enrolling new certificates (and specifically certificates with unique keys) is advantageous in that respect.

Certificate Enrollment

There are several different ways to enroll for Let’s Encrypt certificates. The preferred method is using PowerShell, as it works on both Windows Server with Desktop Experience (GUI) and Windows Server Core. Using PowerShell, administrators can also fully automate the enrollment and assignment of the certificate in RRAS.

PowerShell Module

To enroll for Let’s Encrypt TLS certificates on the VPN server, install the Posh-ACME PowerShell module. On the RRAS server, open an elevated PowerShell window and run the following command.

Install-Module Posh-ACME

Certificate Request

After installing the Posh-ACME PowerShell module, select a Let’s Encrypt environment by running the following command. Use LE_PROD for the production Let’s Encrypt server or LE_STAGE for the staging environment (used for testing).

Set-PAServer LE_PROD

Next, request a new certificate using the following command.

New-PACertificate -Domain vpn.example.net -Contact ‘[email protected]’ -CertKeyLength ec-256 -AcceptTOS -Install

The administrator is prompted to create a TXT record in public DNS to prove ownership of the domain. Using the example above, create a DNS record called _acme-challenge.vpn in the example.net DNS zone.

Once complete, the TLS certificate is automatically installed in the local computer certificate store on the VPN server and can be assigned in the RRAS management console, as shown here.

Note: R3 is a Let’s Encrypt issuing certification authority.

DNS Plugin

The Posh-ACME PowerShell module supports DNS plugins that allow administrators to automate the creation of the DNS TXT record used to authorize certificate enrollment. DNS plugins for many public DNS providers are available. Some of the more popular DNS providers are listed here.

  • Microsoft Azure
  • Amazon Route53
  • Cloudflare
  • Akamai
  • GoDaddy
  • Infoblox
  • Windows Server

A list of all supported DNS plugins for Posh-ACME can be found here.

Certificate Binding

Administrators can use the following PowerShell example code to automate the process of binding the new TLS certificate to the SSTP listener in RRAS.

$Thumbprint = <TLS certificate thumbprint>
$Cert = Get-ChildItem -Path Cert:\LocalMachine\My\$thumbprint
Set-RemoteAccess -SslCertificate $Cert
Restart-Service RemoteAccess -Passthru

Additional Information

Posh-ACME Tutorial

Windows 10 Always On VPN TLS Certificate Requirements for SSTP

Windows 10 Always On VPN SSTP Security Configuration

Always On VPN Book Available for Pre-Order

Great news! My new book, Implementing Always On VPN, is now available for pre-order on Amazon.com. This new book, scheduled for release in late 2021, is a comprehensive implementation guide for Windows 10 Always On VPN. Drawing on many years of experience deploying Always On VPN for organizations worldwide, it covers all aspects of an Always On VPN deployment, including planning and design, prerequisite gathering, infrastructure preparation, and client deployment.

In addition, it contains detailed, prescriptive guidance for advanced configuration options such as application and traffic filtering and proxy server configuration. Cloud deployments using Azure VPN gateway and Virtual WAN are covered, and it includes guidance for configuring Azure MFA and Conditional Access.

Also, the book includes thorough guidance for provisioning certificates using Microsoft Endpoint Manager/Intune using both PKCS and SCEP. It outlines options for high availability for VPN and authentication infrastructure and provides details for ongoing system maintenance and operational support.

Finally, the book has an entire chapter dedicated to troubleshooting and resolving common (and not so common!) issues encountered with Windows 10 Always On VPN.

Reserve your copy today. Pre-order Implementing Always On VPN now!

Chapter List

  1. Always On VPN Overview
  2. Plan an Always On VPN Deployment
  3. Prepare the Infrastructure
  4. Configure Windows Server for Always On VPN
  5. Provision Always On VPN clients
  6. Advanced Configuration
  7. Cloud Deployments
  8. Deploy Certificates with Intune
  9. Integrating Azure MFA
  10. High Availability
  11. Monitor and Report
  12. Troubleshooting

Always On VPN Error 853 on Windows 11

Recently I did some validation testing with Always On VPN on Windows 11, and I’m happy to report that everything seems to work without issue. However, a few readers have reported 853 errors when establishing an Always On VPN connection after upgrading to Windows 11.

Can’t Connect

After upgrading to Windows 11, an Always On VPN connection may fail with the following error message.

“The remote access connection completed, but authentication failed because the certificate that authenticates the client to the server is not valid. Ensure the certificate used for authentication is valid.”

Error 853

In addition, the Application event log records an event ID 20227 from the RasClient source that includes the following message.

“The user <username> dialed a connection name <connection name> which has failed. The error code returned on failure is 853.”

Server Identity

This error will occur when using Protected Extensible Authentication Protocol (PEAP) authentication. Specifically, it can happen when the option to verify NPS server validity by its certificate is selected, and an explicit list of NPS servers is defined, as shown here.

Case Sensitive

In this specific scenario, Windows 11 now appears to be case-sensitive when it compares the NPS server name entered in the NPS configuration to the Subject Name on the certificate returned by the server. For example, if the Subject Name (or Subject Alternative Name, if present) entry on the NPS server certificate is nps.lab.richardhicks.net, using NPS.lab.richardhicks.net will not match and return an 853 error.

Windows 11

Case matching when validating the NPS server certificate is a change in behavior from Windows 10. Before Windows 11, this comparison was case-insensitive, and any combination of case would match if the entire hostname matched. Going forward, it appears Microsoft has also decided to require case matching to validate the server certificate.

Recommendations

Administrators should look carefully at the server certificate issued to the NPS server and ensure their client configuration accurately reflects the hostname in a case-sensitive manner to ensure a smooth migration from Windows 10 to Windows 11.

Additional Information

Troubleshooting Windows 10 Always On VPN Error 853

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Always On VPN Short Name Access Failure

Using Microsoft Endpoint Manager (Intune), administrators can provision Always On VPN to devices that are Azure AD joined only. Users accessing on-premises resources from these devices can still use seamless single sign-on, making this deployment option popular for organizations moving to the cloud.

Short Names

After deploying Always On VPN to Windows 10 devices that are Azure AD joined only and configured to use client certificate authentication, administrators may find that users cannot access on-premises resources by their short name, such as \\app1. The connection fails and returns the following error message.

“Windows can’t find <servername/sharename>. Check the spelling and try again.”

FQDN

Interestingly, on-premises resources are accessible using their fully qualified domain name (FQDN), such as \\app1.corp.example.net.

Troubleshooting

Testing name resolution using the short name works as expected, and the resource is reachable at the network layer, as shown here.

Workaround

This issue is related to how Windows performs authentication when connected via VPN. To resolve this issue, edit the rasphone.pbk file and change the value of UseRasCredentials to 0. Rasphone.pbk can be found in the $env:AppData\Microsoft\Network\Connections\Pbk folder.

After updating this setting, restart the VPN connection for the change to take effect.

Proactive Remediations

While helpful for testing, editing rasphone.pbk manually obviously does not scale well. To address this, consider using Intune Proactive Remediations. Intune Proactive Remediations allows administrators to deploy detection and remediation PowerShell scripts to monitor specific settings and update them if or when they change. Proactive Remediations will ensure the setting is applied consistently across all managed endpoints.

GitHub Repository

I have created a new GitHub repository dedicated to PowerShell scripts for Endpoint Manager Proactive Remediations for Always On VPN. There you will find detection and remediation scripts for the UseRasCredentials settings change described in this article.

Additional Information

Always On VPN Endpoint Manager Proactive Remediation Scripts on GitHub

Endpoint Manager Proactive Remediations Tutorial

Always On VPN Authentication Failure with Azure Conditional Access

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Integrating Microsoft Azure Conditional Access with Windows 10 Always On VPN has several important benefits. The most important is that it allows administrators to improve their security posture by enforcing access polices that can be dynamically applied. For example, requiring multifactor authentication (MFA) for privileged users (e.g., administrators) or sign-ins that appear to be risky, the type of device they are connecting with, the health of the endpoint, and much more.

Authentication Failure

When configuring Always On VPN to support Azure Conditional Access, administrators may expeirence a failed authentication during preliminary testing. Specifically, an event ID 20227 from the RasClient source may be encountered with the following error message.

“The user <username> dialed a connection named <connection name> which has failed. The error code returned on failure is 812.”

Looking at the event logs on the Network Policy Server (NPS) server reveals an event ID 6273 from the Microsoft Windows security auditing source with Reason Code 258 and the following Reason.

“The revocation function was unable to check revocation for the certificate.”

Root Cause

When Azure Conditional Access is configured for Always On VPN, a short-lived certificate (1 hour lifetime) is provisioned by Azure. This certificate does not include revocation information because, by design, a short-lived certificate does not need to be revoked. However, by default NPS always checks revocation when client authentication certificates are used for authentication. Since the certificate does not include this information, certificate revocation fails.

Resolution

The way to resolve this issue is to disable certificate revocation checking for Protected Extensible Authentication Protocol (PEAP) authentication requests. To do this, open an elevated PowerShell window on the NPS server and run the following command.

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Services\RasMan\PPP\EAP\13\’ -Name IgnoreNoRevocationCheck -PropertyType DWORD -Value 1 -Force

Once complete, restart the NPS server for the changes to take effect.

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Windows 10 Always On VPN Network Policy Server (NPS) Server 2019 Bug

Troubleshooting Always On VPN Error 853

Troubleshooting Always On VPN Error 691 and 812 – Part 2

Using Windows Server Network Policy Server (NPS) servers is a common choice for authenticating Microsoft Windows 10 Always On VPN user tunnel connections. The NPS server is joined to the domain and configured with a Network Policy that defines the authentication scheme used by clients for authentication when establishing an Always On VPN connection. Protected Extensible Authentication Protocol (PEAP) using client authentication certificates recommended for most Always On VPN deployment scenarios.

Can’t Connect

Users establishing an Always On VPN user tunnel connection using PEAP and client authentication certificates may encounter a scenario in which a VPN connection attempt fails with the following error message.

“The remote access connection completed, but authentication failed because the certificate that authenticates the client to the server is not valid. Ensure that the certificate used for authentication is valid.”

Error 853

In addition, the Application event log records an event ID 20227 from the RasClient source that includes the following error message.

“The user <username> dialed a connection named <connection name> which has failed. The error code is 853.”

Missing NTAuth Certificate

Error code 853 is commonly caused by a missing issuing Certification Authority (CA) certificate in the NTAuth store on the NPS server. The NPS server must have the issuing CA certificate included in this store to perform authentication using client certificates. You can see the contents of the NTAuth certificate store by opening an elevated command window on the NPS server and running the following command.

certutil.exe -enterprise -viewstore NTAuth

Install Certificate

To install the issuing CA server’s certificate into the NTAuth store, copy the CA certificate to the NPS server, open an elevated command window, then run the following command.

certutil.exe -enterprise -addstore NTAuth <issuing CA certificate>

Once complete, view the store again, and you’ll see the issuing CA certificate listed in the NTAuth certificate store.

Additional Information

Troubleshooting Always On VPN Error Code 858

Troubleshooting Always On VPN Error Code 864

Always On VPN and Windows Server 2019 NPS Bug

Always On VPN Network Policy Server (NPS) Load Balancing

Microsoft Network Policy Server (NPS) Reason Codes

Always On VPN and Zero Trust Network Access (ZTNA)

Always On VPN and Zero Trust Network Access (ZTNA)

Zero Trust Network Access (ZTNA) is a term that administrators are likely familiar with, as it is one of the hottest marketing buzzwords in circulation today. ZTNA can mean different things depending on the deployment scenario. ZTNA is fundamentally about enforcing the principle of least privilege for endpoints connecting remotely to the corporate network when it comes to enterprise mobility and remote access.

Trusted Access

Historically, VPNs and even DirectAccess granted full, unrestricted network access to authenticated devices and users. Once the endpoint has an IP address, and in the absence of other controls (routing limitations, firewall access controls, etc.), the user could access any resource on the internal network. The rationale was that authenticated devices and users should be considered “trusted”.

Limitations

The Trusted Access model has some significant limitations. It assumes that all traffic from authorized users and devices is legitimate. However, if an endpoint is compromised, an attacker has broad access to the internal network, which is not ideal from a security perspective.

Zero Trust

Zero Trust Network Access is a concept where administrators define explicitly the minimum level of access required to support remote workers. Instead of granting full network access to the endpoint, controlling access using fine-grained policies is enforced on the VPN connection. Configuring limited network access for Always On VPN clients dramatically reduces exposure of the internal network to compromised endpoints.

ZTNA Management

There is a significant management burden associated with this approach, however. Administrators must identify each application requiring VPN access and determine all associated protocols and ports to be allowed, and internal resources to which they will communicate. Although this task isn’t difficult if clients require access to a small subset of internal resources, it can be a substantial undertaking if clients require access to many internal resources from numerous client applications.

Moving Targets

Making things more challenging is that application and network infrastructure often change constantly, requiring administrators to manage network access continually to ensure application availability. When adding new applications or changing the internal infrastructure, updating the configuration on all remote endpoints will be required.

Updating Always On VPN configuration for devices managed with Microsoft Endpoint Manager (formerly Intune) isn’t difficult. However, it can be more challenging when using PowerShell with System Center Configuration Manager (SCCM) or another endpoint management platform.

Traffic Filters

ZTNA can be configured with Always On VPN using Traffic Filters. With Traffic Filters, administrators can apply fine-grained access control for VPN traffic based on a combination of the following.

  • Source IP address (IP address, address range, or subnet)
  • Destination IP address (IP address, address range, or subnet)
  • Protocol (TCP, UDP, IP, etc.)
  • Source Port
  • Destination Port

Endpoint Manager Configuration

Configuring Traffic Filters for Always On VPN connections can be performed using Microsoft Endpoint Manager. Open the Endpoint Manager management console (https://endpoint.microsoft.com), navigate to the Always On VPN device configuration profile, then perform the following steps.

  1. Expand App and Traffic Rules.
  2. Click Add next to Network traffic rules for this VPN connection.
  1. Enter a descriptive name in the Name field.
  2. Select Split tunnel from the Rule type drop-down list.
  3. Enter “6” in the Protocol field.
  4. Enter “3389” in the Lower port and Upper port fields in the Remote port ranges section.
  5. Enter an IPv4 address in the Lower IPv4 address field.
  6. Enter an IPv4 address in the Upper IPv4 address field. Enter the same IPv4 address as the lower address to specify a single host.
  7. Click Save.

The example above shows a traffic filter restricting access to TCP port 3389 (Remote Desktop Protocol) from all VPN clients to the 172.16.0.0/24 network.

Note: Repeat these steps to create as many traffic filters as required for any processes or applications that must communicate over the Always On VPN connection.

XML Configuration

Traffic Filters can also be configured using custom XML. To implement the same Traffic Filter described previously, add the following code between the <VPNProfile> and </VPNProfile> tags in your XML configuration file.

<TrafficFilter>
   <Protocol>6</Protocol>
   <RemotePortRanges>3389</LocalPortRanges>
   <RemoteAddressRanges>172.16.0.0/24</RemoteAddressRanges>
</TrafficFilter>

Note: Address ranges used in Traffic Filters can be defined using CIDR notation in XML, but they are not supported using Microsoft Endpoint Manager today.

Default Deny

When configuring a Traffic Filter for an Always On VPN profile, an implicit “deny all” rule is automatically enabled. Any traffic not explicitly defined in a Traffic Filter will be denied, including unsolicited inbound traffic, which has crucial implications for the device tunnel because it is used commonly for system management of remote devices.

Direction

Traffic Filters are enabled for the Outbound direction only, by default. Beginning with Windows 10 2004, Microsoft introduced support for Inbound traffic filters. Before Windows 10 2004, configuring a Traffic Filter on the device tunnel would break manage-out scenarios by denying all unsolicited inbound network access.

As of this writing, configuring inbound Traffic Filters using Microsoft Endpoint Manager is not supported. They are only configurable using custom XML.

To implement a Traffic Filter to allow inbound RDP access from the internal network over the device tunnel, add the following code between the <VPNProfile> and </VPNProfile> tags in your XML configuration file.

<TrafficFilter>
   <Protocol>6</Protocol>
   <LocalPortRanges>3389</LocalPortRanges>
   <RemoteAddressRanges>172.16.0.0/16</RemoteAddressRanges>
   <Direction>Inbound</Direction>
</TrafficFilter>

Note: When configuring inbound Traffic Filters, specify the port of the listening process or application using the LocalPortRanges field.

Application Filters

Administrators can combine Application Filters with Traffic Filters to control network access over the Always On VPN connection even more granularly. Applications can be defined by the following.

  • Package Family Name (PFN) – This is the unique name of a Microsoft Store application. Use the Get-AppxPackage PowerShell command to find the PFN for an application.
  • File Path – This is the full path to any executable on the file system. For example, c:\Windows\System32\mstsc.exe.
  • SYSTEM – This allows Windows kernel-mode drivers (such as ping.exe and net.exe) to send traffic over the Always On VPN connection.

As of this writing, configuring Application Filters using Microsoft Endpoint Manager is not supported. They are only configurable using custom XML.

Application Filter Examples

Below are three examples showing different Application Filters based on file path, Package Family Name, and SYSTEM.

File Path

This example shows a Traffic Filter configured to allow RDP access to an internal subnet using the native Windows Remote Desktop client (mstsc.exe).

<TrafficFilter>
   <App>
      <Id>C:\Windows\System32\mstsc.exe</Id>
   </App>
   <Protocol>6</Protocol>
   <RemotePortRanges>3389</RemotePortRanges>
   <RemoteAddressRanges>172.16.0.0/24</RemoteAddressRanges>
</TrafficFilter>

Package Family Name

This example shows a Traffic Filter configured to allow RDP access to an internal subnet using the Microsoft Windows Store Remote Desktop client.

<TrafficFilter>
   <App>
      <Id>Microsoft.RemoteDesktop_8wekyb3d8bbwe</Id>
   </App>
   <Protocol>6</Protocol>
   <RemotePortRanges>3389</RemotePortRanges>
   <RemoteAddressRanges>172.16.0.0/24</RemoteAddressRanges>
</TrafficFilter>

SYSTEM

This example shows a Traffic Filter configured to allow the netsh.exe process access to an internal subnet.

<TrafficFilter>
   <App>
      <Id>SYSTEM</Id>
   </App>
   <Protocol>6</Protocol>
   <RemotePortRanges>445</RemotePortRanges>
   <RemoteAddressRanges>172.16.0.0/24</RemoteAddressRanges>
</TrafficFilter>

This example shows a Traffic Filter configured to allow the ping.exe process access to an internal subnet.

<TrafficFilter>
   <App>
      <Id>SYSTEM</Id>
   </App>
   <Protocol>1</Protocol>
   <RemoteAddressRanges>172.16.0.0/24</RemoteAddressRanges>
</TrafficFilter>

Note: Ping uses ICMP (IP protocol 1), which is a network layer protocol. As such, defining ports for the filter is not required.

IPv6 Compatibility

Sadly, the filtering techniques described in this article do not work when also configuring IPv6 on the Always On VPN connection. As of this writing, enabling Traffic Filters when an IPv6 address is assigned to the VPN interface is not supported. More details can be found here.

Always On VPN Traffic Filters and IPv6

Summary

Configuring Zero Trust Network Access (ZTNA) with Windows 10 Always On VPN is not trivial. Still, with attention to detail, it can be a highly effective tool to enforce fine-grained network access policies and reduce exposure of the internal network to compromised endpoints. Combining Traffic Filters with Application Filters allows administrators to tightly control Always On VPN access and ensure the principle of least privilege is applied.

Additional Information

Windows 10 Always On VPN Traffic Filters and IPv6

Windows 10 Always On VPN User Tunnel XML Configuration Reference File

Windows 10 Always On VPN Device Tunnel XML Configuration Reference File

Windows 10 Always On VPN VPNv2 CSP Reference

IP Protocol Numbers

%d bloggers like this: