Always On VPN Error 853 on Windows 11

Recently I did some validation testing with Always On VPN on Windows 11, and I’m happy to report that everything seems to work without issue. However, a few readers have reported 853 errors when establishing an Always On VPN connection after upgrading to Windows 11.

Can’t Connect

After upgrading to Windows 11, an Always On VPN connection may fail with the following error message.

“The remote access connection completed, but authentication failed because the certificate that authenticates the client to the server is not valid. Ensure the certificate used for authentication is valid.”

Error 853

In addition, the Application event log records an event ID 20227 from the RasClient source that includes the following message.

“The user <username> dialed a connection name <connection name> which has failed. The error code returned on failure is 853.”

Server Identity

This error will occur when using Protected Extensible Authentication Protocol (PEAP) authentication. Specifically, it can happen when the option to verify NPS server validity by its certificate is selected, and an explicit list of NPS servers is defined, as shown here.

Case Sensitive

In this specific scenario, Windows 11 now appears to be case-sensitive when it compares the NPS server name entered in the NPS configuration to the Subject Name on the certificate returned by the server. For example, if the Subject Name (or Subject Alternative Name, if present) entry on the NPS server certificate is nps.lab.richardhicks.net, using NPS.lab.richardhicks.net will not match and return an 853 error.

Windows 11

Case matching when validating the NPS server certificate is a change in behavior from Windows 10. Before Windows 11, this comparison was case-insensitive, and any combination of case would match if the entire hostname matched. Going forward, it appears Microsoft has also decided to require case matching to validate the server certificate.

Recommendations

Administrators should look carefully at the server certificate issued to the NPS server and ensure their client configuration accurately reflects the hostname in a case-sensitive manner to ensure a smooth migration from Windows 10 to Windows 11.

Additional Information

Troubleshooting Windows 10 Always On VPN Error 853

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Always On VPN Authentication Failure with Azure Conditional Access

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Integrating Microsoft Azure Conditional Access with Windows 10 Always On VPN has several important benefits. The most important is that it allows administrators to improve their security posture by enforcing access polices that can be dynamically applied. For example, requiring multifactor authentication (MFA) for privileged users (e.g., administrators) or sign-ins that appear to be risky, the type of device they are connecting with, the health of the endpoint, and much more.

Authentication Failure

When configuring Always On VPN to support Azure Conditional Access, administrators may expeirence a failed authentication during preliminary testing. Specifically, an event ID 20227 from the RasClient source may be encountered with the following error message.

“The user <username> dialed a connection named <connection name> which has failed. The error code returned on failure is 812.”

Looking at the event logs on the Network Policy Server (NPS) server reveals an event ID 6273 from the Microsoft Windows security auditing source with Reason Code 258 and the following Reason.

“The revocation function was unable to check revocation for the certificate.”

Root Cause

When Azure Conditional Access is configured for Always On VPN, a short-lived certificate (1 hour lifetime) is provisioned by Azure. This certificate does not include revocation information because, by design, a short-lived certificate does not need to be revoked. However, by default NPS always checks revocation when client authentication certificates are used for authentication. Since the certificate does not include this information, certificate revocation fails.

Resolution

The way to resolve this issue is to disable certificate revocation checking for Protected Extensible Authentication Protocol (PEAP) authentication requests. To do this, open an elevated PowerShell window on the NPS server and run the following command.

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Services\RasMan\PPP\EAP\13\’ -Name IgnoreNoRevocationCheck -PropertyType DWORD -Value 1 -Force

Once complete, restart the NPS server for the changes to take effect.

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Windows 10 Always On VPN Network Policy Server (NPS) Server 2019 Bug

Troubleshooting Always On VPN Error 853

Troubleshooting Always On VPN Error 691 and 812 – Part 2

Using Windows Server Network Policy Server (NPS) servers is a common choice for authenticating Microsoft Windows 10 Always On VPN user tunnel connections. The NPS server is joined to the domain and configured with a Network Policy that defines the authentication scheme used by clients for authentication when establishing an Always On VPN connection. Protected Extensible Authentication Protocol (PEAP) using client authentication certificates recommended for most Always On VPN deployment scenarios.

Can’t Connect

Users establishing an Always On VPN user tunnel connection using PEAP and client authentication certificates may encounter a scenario in which a VPN connection attempt fails with the following error message.

“The remote access connection completed, but authentication failed because the certificate that authenticates the client to the server is not valid. Ensure that the certificate used for authentication is valid.”

Error 853

In addition, the Application event log records an event ID 20227 from the RasClient source that includes the following error message.

“The user <username> dialed a connection named <connection name> which has failed. The error code is 853.”

Missing NTAuth Certificate

Error code 853 is commonly caused by a missing issuing Certification Authority (CA) certificate in the NTAuth store on the NPS server. The NPS server must have the issuing CA certificate included in this store to perform authentication using client certificates. You can see the contents of the NTAuth certificate store by opening an elevated command window on the NPS server and running the following command.

certutil.exe -enterprise -viewstore NTAuth

Install Certificate

To install the issuing CA server’s certificate into the NTAuth store, copy the CA certificate to the NPS server, open an elevated command window, then run the following command.

certutil.exe -enterprise -addstore NTAuth <issuing CA certificate>

Once complete, view the store again, and you’ll see the issuing CA certificate listed in the NTAuth certificate store.

Additional Information

Troubleshooting Always On VPN Error Code 858

Troubleshooting Always On VPN Error Code 864

Always On VPN and Windows Server 2019 NPS Bug

Always On VPN Network Policy Server (NPS) Load Balancing

Microsoft Network Policy Server (NPS) Reason Codes

Always On VPN Continue Connecting Prompt

Using the Extensible Authentication Protocol (EAP) with client certificates is the recommended best practice for authentication for Windows 10 Always On VPN deployments. EAP, and especially Protected EAP (PEAP), has a lot of settings to configure and it is not uncommon to encounter issues related to some parameters being defined incorrectly. This post covers one of the more common issues related to EAP/PEAP misconfiguration.

Action Needed?

When establishing an Always On VPN user tunnel connection, users may find the connection does not complete automatically, and they are informed that additional action is needed.

Clicking on the VPN connection and then clicking Connect prompts the user with the following message.

“Action needed. Continue connecting? We don’t have enough info to validate the server. You can still connect if you trust this server.”

Common Causes

This message can occur when (EAP) is used and is configured to perform server validation with a restricted set of NPS servers, as shown here.

NPS Server Certificate

The NPS server performing authentication for the connection request must have a certificate that includes a subject name that matches one of the names of the NPS servers defined in the EAP configuration. The certificate must be issued by the organizations private certification authority (CA).

EAP Configuration

Alternatively, the client-side EAP configuration may be incorrect. Although the NPS server may have the correct hostname configured on its certificate, it may not be entered correctly on the client. Ensure the hostname listed in the “Connect to these servers” field matches the subject name or SAN of the NPS server certificate defined in the network policy used for the Always On VPN user tunnel. Look carefully at the syntax when defining multiple NPS servers. Multiple servers are separated by a semi-colon and there are no additional spaces. Missing either one of these critical details will result in connection prompts. Also, ensure that all NPS servers used for authentication (those defined on the VPN server) are included in this list.

Note: Administrators must ensure that all VPN clients have updated their EAP configuration before adding additional NPS servers to the environment. Failure to do so will result in connection prompts.

Security Best Practice

To be clear, the behavior above is not ideal from a security perspective. Validating the NPS server before authenticating is crucial to ensuring the highest level of security and assurance, preventing credential theft from a man-in-the-middle attack. For this reason, it is recommended that users not be given the choice to authorize an NPS server. Authorized NPS servers should be defined by administrators exclusively. This is accomplished by selecting the option “Don’t ask user to authorize new servers or trusted CAs” in the Notifications before connecting drop-down list, and by selecting the option “Don’t prompt user to authorize new servers or trusted certification authorities“.

Additional Information

Always On VPN Network Policy Server (NPS) Load Balancing

Always On VPN and Windows Server 2019 NPS Bug

Troubleshooting Always On VPN Error 691 and 812 – Part 3

Troubleshooting Always On VPN Error 691 and 812 – Part 2When implementing Windows 10 Always On VPN, administrators may encounter errors 691 or 812 when establishing a VPN connection. There are several different configuration issues that will result in these errors. For example they may occur when TLS 1.0 has been disabled on the RRAS server when installed on servers prior to Windows Server 2016. It can also happen if a user’s Active Directory account is configured to deny dial-in access and the NPS server is not configured to ignore user account dial-in properties. Another scenario that can result in 691/812 errors is when the Active Directory security groups are configured as conditions on the Network Policy Server (NPS) Network Policy. See below for more details.

SSTP and Error 691

When attempting to establish an Always On VPN connection using the Secure Socket Tunneling Protocol (SSTP), administrators may encounter the following error message.

“The remote connection was denied because the user name and password combination you provided is not recognized, or the selected authentication protocol is not permitted on the remote access server.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2

In addition, an error 691 with event ID 20227 from the RasClient source can be found in the Application event log on the client.

“The user <domain\user> dialed a connection named which has failed. The error code returned on failure is 691.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2

IKEv2 and Error 812

When attempting to establish an Always On VPN connection using Internet Key Exchange version 2 (IKEv2), administrators may encounter the following error message.

“The connection as prevented because of a policy configured on your RAS/VPN server. Specifically, the authentication method used by the server to verify your username and password may not match the authentication method configured in your connection profile. Please contact the Administrator of the RAS server and notify them of this error.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2

In addition, an error 812 with event ID 20227 from the RasClient source can be found in the Application event log on the client.

Troubleshooting Always On VPN Error 691 and 812 – Part 2

NPS Event Log

On the NPS server the administrator will find an entry in the application event log with event ID 6273 from the Microsoft Windows security auditing source and the Network Policy Server task category indicating the network policy server denied access to the user. Looking closely at this event log message shows Reason Code 48 and the following reason.

“The connection request did not match any configured network policy.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2Group Membership

As stated earlier, another scenario in which administrators will encounter errors 691 and/or 812 is when the Network Policy on the NPS server is configured incorrectly. Specifically, and administrator may wish to grant access to more than one group but intend for access to be granted to users who are a member of any of them. Conversely, they may wish to require access in all specified groups to gain access to the VPN. Configuring each of these conditions is subtly different, however.

Open the NPS management console on the NPS server and follow the steps below to configure user group conditions correctly for the following scenarios.

Any Group

1. Right-click the Always On VPN network policy and choose Properties.
2. Click on the Conditions tab.
3. Click the Add button.
4. Click User Groups.
5. Click Add.
6. Click Add Groups.
7. Enter the name of the group you want to grant access to.
8. Click Ok.
9. Repeat the steps 6-8 above to specify additional groups.

Troubleshooting Always On VPN Errors 691 and 812

All Groups

1. Right-click the Always On VPN network policy and choose Properties.
2. Click on the Conditions tab.
3. Click the Add button.
4. Click User Groups.
5. Click Add.
6. Click Add Groups.
7. Enter the name of the group you want to grant access to.
8. Click Ok.
9. Repeat steps 3-8 above to specify additional groups (you must go back to the Add button on step 3!).

Troubleshooting Always On VPN Errors 691 and 812

Additional Information

Troubleshooting Always On VPN Error 691 and 812 – Part 1

Troubleshooting Always On VPN Error 691 and 812 – Part 2

Always On VPN Device Tunnel Only Deployment Considerations

Always On VPN Device Tunnel Only Deployment ConsiderationsRecently I wrote about Windows 10 Always On VPN device tunnel operation and best practices, explaining its common uses cases and requirements, as well as sharing some detailed information about authentication, deployment recommendations, and best practices. I’m commonly asked if deploying Always On VPN using the device tunnel exclusively, as opposed to using it to supplement the user tunnel, is supported or recommended. I’ll address those topics in detail here.

Device Tunnel Only?

To start, yes, it is possible to deploy Windows 10 Always On VPN using only the device tunnel. In this scenario the administrator will configure full access to the network instead of limited access to domain infrastructure services and management servers.

Is It Recommended?

Generally, no. Remember, the device tunnel was designed with a specific purpose in mind, that being to provide pre-logon network connectivity to support scenarios such as logging on without cached credentials. Typically, the device tunnel is best used for its intended purpose, which is providing supplemental functionality to the user tunnel.

Deployment Considerations

The choice to implement Always On VPN using only the device tunnel is an interesting one. There are some potential advantages to this deployment model, but it is not without some serious limitations. Below I’ve listed some of the advantages and disadvantages to deploying the device tunnel alone for Windows 10 Always On VPN.

Advantages

Using the device tunnel alone does have some compelling advantages over the standard two tunnel (device tunnel/user tunnel) deployment model. Consider the following.

  • Single VPN Connection – Deploying the device tunnel alone means a single VPN connection to configure, deploy, and manage on the client. This also results in less concurrent connections and, importantly, less IP addresses to allocate and provision.
  • Reduced Infrastructure – The device tunnel is authenticated using only the device certificate. This certificate check is performed directly on the Windows Server Routing and Remote Access Service (RRAS) VPN server, eliminating the requirement to deploy Network Policy Server (NPS) servers for authentication.
  • User Transparency – The device tunnel does not appear in the modern Windows UI. The user will not see this connection if they click on the network icon in the notification area. In addition, they will not see the device tunnel connection in the settings app under Network & Internet > VPN. This prevents casual users from playing with the connection settings, and potentially deleting the connection entirely. It’s not that they can’t delete the device tunnel however, it’s just not as obvious.
  • Simplified Deployment – Deploying the device tunnel is less complicated than deploying the user tunnel. The device tunnel is provisioned once to the device and available to all users. This eliminates the complexity of having to deploy the user tunnel in each individual user’s profile.

Disadvantages

While there are some advantages to using the device tunnel by itself, this configuration is not without some serious limitations. Consider the following.

  • IKEv2 Only – The device tunnel uses the IKEv2 VPN protocol exclusively. It does not support SSTP. While IKEv2 is an excellent protocol in terms of security, it is commonly blocked by firewalls. This will prevent some users from accessing the network remotely depending on their location.
  • Limited OS Support – The device tunnel is only supported on Windows 10 Enterprise edition clients, and those clients must be joined to a domain. Arguably the device tunnel wouldn’t be necessary if the client isn’t domain joined, but some organizations have widely deployed Windows 10 Professional, which would then preclude them from being able to use the device tunnel.
  • Machine Certificate Authentication Only – The device tunnel is authenticated using only the certificate issued to the device. This means anyone who logs on to the device will have full access to the internal network. This may or may not be desirable, depending on individual requirements.
  • No Mutual Authentication – When the device tunnel is authenticated, the server performs authentication of the client, but the client does not authenticate the server. The lack of mutual authentication increases the risk of a man-in-the-middle attack.
  • CRL Checks Not Enforced – By default, RRAS does not perform certificate revocation checking for device tunnel connections. This means simply revoking a certificate won’t prevent the device from connecting. You’ll have to import the client’s device certificate into the Untrusted Certificates certificate store on each VPN server. Fortunately, there is a fix available to address this limitation, but it involves some additional configuration. See Always On VPN Device Tunnel and Certificate Revocation for more details.
  • No Support for Azure Conditional Access – Azure Conditional Access requires EAP authentication. However, the device tunnel does not use EAP but instead uses a simple device certificate check to authenticate the device.
  • No Support for Multifactor Authentication – As the device tunnel is authenticated by the RRAS VPN server directly and authentication requests are not sent to the NPS server, it is not possible to integrate MFA with the device tunnel.
  • Limited Connection Visibility – Since the device tunnel is designed for the device and not the user it does not appear in the list of active network connections in the Windows UI. There is no user-friendly connection status indicator, although the connection can be viewed using the classic network control panel applet (ncpa.cpl).

Summary

The choice to deploy Windows 10 Always On VPN using the device tunnel alone, or in conjunction with the user tunnel, is a design choice that administrators must make based on their individual requirements. Using the device tunnel alone is supported and works but has some serious drawbacks and limitations. The best experience will be found using the device tunnel as it was intended, as an optional component to provide pre-logon connectivity for an existing Always On VPN user tunnel.

Additional Information

Windows 10 Always On VPN Device Tunnel with Azure VPN Gateway

Windows 10 Always On VPN Device Tunnel and Certificate Revocation

Windows 10 Always On VPN Device Tunnel Configuration with Microsoft Intune

Windows 10 Always On VPN Device Tunnel Does Not Connect Automatically

Windows 10 Always On VPN Device Tunnel Missing in Windows 10 UI

Deleting a Windows 10 Always On VPN Device Tunnel

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN IKEv2 Features and Limitations

Troubleshooting Always On VPN Error 691 and 812 – Part 2

Troubleshooting Always On VPN Error 691 and 812 – Part 2A while back I wrote about troubleshooting and resolving Windows 10 Always On VPN errors 691 and 812. There are numerous issues that can result in these errors, and in that post I pointed out they can be caused by disabling TLS 1.0 on Windows Servers prior to Windows Server 2016. However, administrators may encounter a another scenario in which they receive errors 691 or 812 which is related to Active Directory user account configuration.

SSTP and Error 691

When attempting to establish an Always On VPN connection using the Secure Socket Tunneling Protocol (SSTP), administrators may encounter the following error message.

“The remote connection was denied because the user name and password combination you provided is not recognized, or the selected authentication protocol is not permitted on the remote access server.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2

In addition, an error 691 with event ID 20227 from the RasClient source can be found in the Application event log on the client.

“The user <domain\user> dialed a connection named which has failed. The error code returned on failure is 691.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2

IKEv2 and Error 812

When attempting to establish an Always On VPN connection using Internet Key Exchange version 2 (IKEv2), administrators may encounter the following error message.

“The connection as prevented because of a policy configured on your RAS/VPN server. Specifically, the authentication method used by the server to verify your username and password may not match the authentication method configured in your connection profile. Please contact the Administrator of the RAS server and notify them of this error.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2

In addition, an error 812 with event ID 20227 from the RasClient source can be found in the Application event log on the client.

Troubleshooting Always On VPN Error 691 and 812 – Part 2

NPS Event Log

On the NPS server the administrator will find an entry in the application event log with event ID 6273 from the Microsoft Windows security auditing source and the Network Policy Server task category indicating the network policy server denied access to the user. Looking closely at this event log message shows Reason Code 65 and the following reason.

“The Network Access Permission setting in the dial-in properties of the user account in Active Directory is set to Deny access to the user. To change the Network Access permission setting to either Allow access or Control access through NPS Network Policy, obtain the properties of the user account in Active Directory Users and Computers, click the Dial-in tab, and change Network Access Permission.”

Troubleshooting Always On VPN Error 691 and 812 – Part 2

Resolution

There are two options available to address this issue. The user account in Active Directory can be configured to grant access or allow access to be controlled via NPS network policy, or the NPS network policy can be configured to ignore user account dial-in properties.

User Account

Follow the steps below to change Network Access Permission on an individual user’s Active Directory account.

  1. Open the Active Directory User and Computers (ADUC) management console (dsa.msc) and double-click the user’s account.
  2. Select the Dial-in tab.
  3. In the Network Access Permission section select the option to Allow access or Control access through NPS Network Policy.

Troubleshooting Always On VPN Error 691 and 812 – Part 2

Note: If you do not see the dial-in tab, open the ADUC console on a domain controller. The dial-in tab is not displayed when using the Remote Server Administration Tools (RSAT) for Windows clients.

Network Policy

Follow the steps below to configure NPS network policy to ignore user account dial-in properties.

  1. Open the NPS management console (nps.msc) and double-click the Always On VPN network policy.
  2. In the Access Permission section select Ignore user account dial-in properties.
  3. Click Ok to save the changes.

Troubleshooting Always On VPN Error 691 and 812 – Part 2

Additional Information

Windows 10 Always On VPN Troubleshooting Error 691 and 812

Always On VPN Error Code 858

Always On VPN Error Code 858When configuring Windows 10 Always On VPN using Extensible Authentication Protocol (EAP), the administrator may encounter a scenario in which the client connection fails. The event log will include an event ID 20227 from the RasClient source that includes the following error message.

“The user [domain\username] dialed a connection named [connection name] which has failed. The error code returned on failure is 858.”

Always On VPN Error Code 858

RasClient Error 858

RasClient error code 858 translates to ERROR_EAP_SERVER_CERT_EXPIRED. Intuitively, this indicates that the Server Authentication certificate installed on the Network Policy Server (NPS) has expired. To resolve this issue, renew the certificate on the NPS server.

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Windows 10 Always On VPN and Windows Server 2019 NPS Bug

Windows 10 Always On VPN Error Code 864

Troubleshooting Always On VPN Error Code 864

When configuring an Always On VPN connection, the administrator may encounter a scenario in which a VPN connection fails using either Internet Key Exchange version 2 (IKEv2) or Secure Socket Tunneling Protocol (SSTP). On the Windows 10 client the error message states the following.

“Can’t connect to [connection name]. The remote access connection completed, but authentication failed because a certificate that validates the server certificate was not found in the Trusted Root Certification Authorities certificate store.”

Troubleshooting Always On VPN Error Code 864

In addition, the Application event log records an error message with Event ID 20227 from the RasClient source. The error message states the following.

“The user [username] dialed a connection name [connection name] which has failed. The error code returned on failure is 864.”

Troubleshooting Always On VPN Error Code 864

NPS Server Certificate

Error code 864 is commonly caused by a missing or invalid server certificate on the Network Policy Server (NPS) performing authentication for VPN clients. The NPS server must have a certificate installed in its local computer certificate store from a trusted certification authority (CA) that includes the following.

Subject Name

The subject name must match the hostname defined in the EAP configuration for VPN clients. This may be the NPS server’s hostname but could also be an alias when NPS load balancing is configured.

Troubleshooting Always On VPN Error Code 864

Enhanced Key Usage

The NPS server certificate must include the Server Authentication Enhanced Key Usage (EKU).

Troubleshooting Always On VPN Error Code 864

NPS Policy Configuration

The NPS server certificate must also be selected in the network policy used for VPN client authentication. To confirm correct certificate configuration, open the properties for the Always On VPN network policy and follow the steps below.

1. Select the Constraints tab.
2. Highlight Authentication Methods.
3. Highlight Microsoft: Protected EAP (PEAP) in the EAP Types field.
4. Click Edit.
5. Select the NPS server certificate from the Certificate issued to drop-down list.

Troubleshooting Always On VPN Error Code 864

Ensure the NPS server certificate is also used for client certificate authentication by performing the following steps.

1. Highlight Smart Card or other certificate.
2. Click Edit.
3. Select the NPS server certificate from the Certificate issued to drop-down list.
4. Click Ok.

Troubleshooting Always On VPN Error Code 864

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Always On VPN with Azure Gateway

Always On VPN with Azure GatewayRecently I wrote about VPN server deployment options for Windows 10 Always On VPN in Azure. In that post I indicated the native Azure VPN gateway could be used to support Always On VPN connections using Internet Key Exchange version 2 (IKEv2) and Secure Socket Tunneling Protocol (SSTP). In this post I’ll outline the requirements and configuration steps for implementing this solution.

Requirements

To support Always On VPN, point-to-site VPN connections must be enabled on the Azure VPN gateway. Not all Azure VPN gateways are alike, and point-to-site connections are not supported in all scenarios. For Always On VPN, the Azure VPN gateway must meet the following requirements.

VPN SKU

The Azure VPN gateway SKU must be VpnGw1, VpnGw2, VpnGw3, VpnGw1AZ, VpnGw2AZ, or VpnGw3AZ. The Basic SKU is not supported.

VPN Type

The VPN type must be route-based. Policy-based VPN gateways are not supported for point-to-site VPN connections.

Limitations

Using the Azure VPN gateway for Always On VPN may not be ideal in all scenarios. The following limitations should be considered thoroughly before choosing the Azure VPN gateway for Always On VPN.

Device Tunnel

RADIUS/EAP authentication for user tunnel connections is not supported if the Azure VPN gateway is configured to support device tunnel with machine certificate authentication.

Maximum Connections

A maximum of 250, 500, and 1000 concurrent IKEv2 connections are supported when using the VpnGw1/AZ, VpnGw2/AZ, and VpnGw3/AZ SKUs, respectively (x2 for active/active gateway deployments). In addition, a maximum of 128 concurrent SSTP connections are supported for all VPN gateway SKUs (x2 for active/active gateway deployments).

Always On VPN with Azure Gateway

Reference: https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways#gwsku

RADIUS Requirements

To support Always On VPN connections, the Azure VPN gateway must be configured to authenticate to a RADIUS server. The RADIUS server must be reachable from the VPN gateway subnet. The RADIUS server can be hosted in Azure or on-premises. Before proceeding, ensure that any network routes, firewall rules, and site-to-site VPN tunnel configuration is in place to allow this communication.

RADIUS Configuration

Guidance for configuring Windows Server NPS for Always On VPN can be found here. The only difference when configuring NPS for use with Azure VPN gateway is the RADIUS client configuration.

Open the NPS management console (nps.msc) and follow the steps below to configure Windows Server NPS to support Always On VPN client connections from the Azure VPN gateway.

1. Expand RADIUS Clients and Servers.
2. Right-click RADIUS Clients and choose New.
3. Enter a descriptive name in the Friendly name field.
4. Enter the Azure VPN gateway subnet using CIDR notation in the Address (IP or DNS) field. The gateway subnet can be found by viewing the properties of the Azure VPN gateway in the Azure portal.
5. Enter the shared secret to be used for RADIUS communication in the Shared secret field.

Always On VPN with Azure Gateway

Azure VPN Gateway Configuration

To begin, provision a Virtual Network Gateway in Azure that meets the requirements outlined above. Guidance for implementing an Azure VPN gateway can be found here. Once complete, follow the steps below to enable support for Always On VPN client connections.

Enable Point-to-Site

Perform the following steps to enable point-to-site VPN connectivity.

1. In the navigation pane of the Azure VPN gateway settings click Point-to-site configuration.
2. Click Configure Now and specify an IPv4 address pool to be assigned to VPN clients. This IP address pool must be unique in the organization and must not overlap with any IP address ranges defined in the Azure virtual network.
3. From the Tunnel type drop-down list select IKEv2 and SSTP (SSL).
4. In the RADIUS authentication field enter the IPv4 address of the RADIUS server. At the time of this writing only a single IPv4 address is supported. If RADIUS redundancy is required, consider creating a load balanced NPS cluster.
5. In the Server secret field enter the RADIUS shared secret.
6. Click Save to save the configuration.

Always On VPN with Azure Gateway

VPN Client Configuration

Perform the following steps to configure a Windows 10 VPN client to connect to the Azure VPN gateway.

Download VPN Configuration

1. Click Point-to-site configuration.
2. Click Download VPN client.
3. Select EAPMSCHAv2 (yes, that’s correct even if EAP-TLS will be used!)
4. Click Download.
5. Open the downloaded zip file and extract the VpnSettings.XML file from the Generic folder.
6. Copy the FQDN in the VpnServer element in VpnSettings.XML. This is the FQDN that will be used in the template VPN connection and later in ProfileXML.

Always On VPN with Azure Gateway

Create a Test VPN Connection

On a Windows 10 device create a test VPN profile using the VPN server address copied previously. Configure EAP settings to match those configured on the NPS server and test connectivity.

Create an Always On VPN Connection

Once the VPN has been validated using the test profile created previously, the VPN server and EAP configuration from the test profile can be used to create the Always On VPN profile for publishing using Intune, SCCM, or PowerShell.

IKEv2 Security Configuration

The default IKEv2 security parameters used by the Azure VPN gateway are better than Windows Server, but the administrator will notice that a weak DH key (1024 bit) is used in phase 1 negotiation.

Always On VPN with Azure Gateway

Use the following PowerShell commands to update the default IKEv2 security parameters to recommended baseline defaults, including 2048-bit keys (DH group 14) and AES-128 for improved performance.

Connect-AzAccount
Select-AzSubscription -SubscriptionName [Azure Subscription Name]

$Gateway = [Gateway Name]
$ResourceGroup = [Resource Group Name]

$IPsecPolicy = New-AzVpnClientIpsecParameter -IpsecEncryption AES128 -IpsecIntegrity SHA256 -SALifeTime 28800 -SADataSize 102400000 -IkeEncryption AES128 -IkeIntegrity SHA256 -DhGroup DHGroup14 -PfsGroup PFS14

Set-AzVpnClientIpsecParameter -VirtualNetworkGatewayName $Gateway -ResourceGroupName $ResourceGroup -VpnClientIPsecParameter $IPsecPolicy

Note: Be sure to update the cryptography settings on the test VPN connection and in ProfileXML for Always On VPN connections to match the new VPN gateway settings. Failing to do so will result in an IPsec policy mismatch error.

Additional Information

Microsoft Azure VPN Gateway Overview

About Microsoft Azure Point-to-Site VPN

Windows 10 Always On VPN IKEv2 Security Configuration

 

 

 

%d bloggers like this: