Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Always On VPN Clients Prompted for Authentication when Accessing Internal ResourcesWhen deploying Windows 10 Always On VPN using Protected Extensible Authentication Protocol (PEAP) with client authentication certificates, the administrator may encounter a scenario in which the user can establish a VPN connection without issue, but when accessing internal resources they are prompted for credentials and receive the following error message.

“The system cannot contact a domain controller to service the authentication request. Please try again later.”

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Resolution

This can occur if one or more domain controllers in the enterprise have expired or missing domain controller authentication certificates. To ensure seamless single sign-on to internal resources, ensure that all domain controllers have a certificate issued by the internal certification authority (CA) that includes the Server Authentication (1.3.6.1.5.5.7.3.1) and Smart Card Logon (1.3.6.1.4.1.311.20.2.2) Enhanced Key Usage (EKU) at a minimum.

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Additional Information

Windows 10 Always On VPN Certificate Requirements for IKEv2

Windows 10 Always On VPN Hands-On Training

Renew DirectAccess Self-Signed Certificates

Renew DirectAccess Self-Signed CertificatesWhen DirectAccess is deployed using the Getting Started Wizard (GSW), sometimes referred to as the “simplified deployment” method, self-signed certificates are created during the installation and used for the IP-HTTPS IPv6 transition technology, the Network Location Server (NLS), and for RADIUS secret encryption.

Renew DirectAccess Self-Signed Certificates

Certificate Expiration

These self-signed certificates expire 5 years after they are created, which means many DirectAccess administrators who have used this deployment option will need to renew these certificates at some point in the future. Unfortunately, there’s no published guidance from Microsoft on how to accomplish this. However, the process is simple enough using PowerShell and the New-SelfSignedCertificate cmdlet.

PowerShell Script

Open an elevated PowerShell command window and run the following commands to renew the DirectAccess self-signed certificates.

# // Clone and install IP-HTTPS certificate

$iphttpscert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq ((Get-RemoteAccess).SslCertificate | Select-Object -ExpandProperty Thumbprint))
$newcert = New-SelfSignedCertificate -CloneCert $iphttpscert -FriendlyName “DirectAccess-IPHTTPS” | Select-Object -ExpandProperty Thumbprint
$cert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq $newcert)
Set-RemoteAccess -SslCertificate $cert -PassThru

# // Clone and install NLS certificate

$nlscert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq ((Get-RemoteAccess).NlsCertificate | Select-Object -ExpandProperty Thumbprint))
$newcert = New-SelfSignedCertificate -CloneCert $nlscert -FriendlyName “DirectAccess-NLS” | Select-Object -ExpandProperty Thumbprint
$cert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq $newcert)
Set-DANetworkLocationServer -NLSOnDAServer -Certificate $cert

# // Clone RADIUS encryption certificate

$cert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Subject -like “*radius-encrypt*”)
New-SelfSignedCertificate -CloneCert $cert -FriendlyName “Certificate issued by Remote Access for RADIUS shared secrets”

Script on GitHub

I’ve also published this script on GitHub. You can download Renew-DaSelfSignedCertificates.ps1 here.

Important Considerations

When the script above is executed, DirectAccess clients outside will be immediately disconnected and will be unable to reconnect until they update group policy. This will require connecting to the internal network locally or remotely using another VPN solution. In addition, internal clients that are not online when this change is made will be unable to access internal resources by name until they update group policy. If this happens, delete the Name Resolution Policy Table (NRPT) on the client using the following PowerShell command and reboot to restore connectivity.

Get-Item -Path “HKLM:\SOFTWARE\Policies\Microsoft\Windows NT\DNSClient\DnsPolicyConfig” | Remove-Item -Confirm:$false

Additional Information

PowerShell Recommended Reading for DirectAccess Administrators

Top 5 DirectAccess Troubleshooting PowerShell Commands

Always On VPN and Azure MFA ESTS Token Error

Always On VPN and Azure MFA ESTS Token ErrorConfiguring Multifactor Authentication (MFA) is an excellent way to ensure the highest level of assurance for Always On VPN users. Azure MFA is widely deployed and commonly integrated with Windows Server Network Policy Server (NPS) using the NPS Extension for Azure MFA. Azure MFA has a unique advantage over many other MFA providers in that it supports MFA when using Protected Extensible Authentication Protocol (PEAP). This makes Azure MFA the solution of choice for integrating with Windows 10 Always On VPN deployments using client certificate authentication, a recommended security configuration best practice.

NPS Configuration

Installing and configuring the NPS extension for Azure MFA is straightforward. Configuration guidance from Microsoft can be found here.

Connection Issues

After installing the NPS extension for Azure MFA, administrators may find that Always On VPN connections fail and the user is never challenged for authentication. The connection eventually times out and returns the following error message.

“A connection to the remote computer could not be established, so the port used for this connection was closed.”

Always On VPN and Azure MFA ESTS Token Error

In addition, the Application event log on the Windows 10 client contains an Event ID 20221 from the RasClient source that includes the following error message.

“The user [username] dialed a connection named [connection] which has failed. The error code returned on failure is 0.”

Always On VPN and Azure MFA ESTS Token Error

NPS Event Log

Reviewing the event logs on the NPS server reveals more information. The Security event log contains an Event ID 6274 from the Microsoft Windows security auditing source that includes the following error message.

“Network Policy Server discarded the request for a user. Contact the Network Policy Administrator for more information.”

Always On VPN and Azure MFA ESTS Token Error

ESTS Token Error

Digging deeper in the operational event log on the NPS server, the AuthZAdminCh log (Applications and Services Logs > Microsoft > AzureMfa > AuthZ) contains an Event ID 3 from the AuthZ source indicating an ESTS_TOKEN_ERROR message.

Always On VPN and Azure MFA ESTS Token Error

Troubleshooting ESTS Token Error

Follow the steps below to troubleshoot the ESTS_TOKEN_ERROR.

Prerequisites

Ensure that all prerequisites are met. Validate the user is being synced to Azure Active Directory and that it is properly licensed for Azure MFA.

Certificates

As part of the NPS extension configuration, a certificate is created on the NPS server that is uploaded to Azure Active Directory. To validate the certificate was created and uploaded correctly, follow the troubleshooting guidance found here.

Enterprise Applications

The Azure Multi-Factor Auth Client and the Azure Multi-Factor Auth Connector enterprise applications must be enabled to support the NPS extension for Azure MFA. To confirm they are enabled, open an elevated PowerShell command window on the server where the Azure AD Connector is installed and run the following PowerShell commands.

Import-Module MSOnline
Connect-MsolService

Get-MsolServicePrincipal -AppPrincipalId “981f26a1-7f43-403b-a875-f8b09b8cd720” | Select-Object DisplayName, AccountEnabled

Get-MsolServicePrincipal -AppPrincipalId “1f5530b3-261a-47a9-b357-ded261e17918” | Select-Object DisplayName, AccountEnabled

Always On VPN and Azure MFA ESTS Token Error

If either or both enterprise applications are not enabled, enable them using the following PowerShell commands.

Set-MsolServicePrincipal -AppPrincipalId “981f26a1-7f43-403b-a875-f8b09b8cd720” -AccountEnabled $True

Set-MsolServicePrincipal -AppPrincipalId “1f5530b3-261a-47a9-b357-ded261e17918” -AccountEnabled $True

Once complete, restart the IAS service on the NPS server using the following PowerShell command.

Restart-Service IAS -PassThru

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing Strategies

Deploy Windows 10 Always On VPN with Microsoft Intune

Windows 10 Always On VPN Hands-On Training Classes Now Available

Denying Access to Always On VPN Users or Computers

Denying Access to Always On VPN Users or ComputersOnce Windows 10 Always On VPN has been deployed in production, it may be necessary at some point for administrators to deny access to individual users or computers. Commonly this occurs when an employee is terminated or leaves the company, or if a device is lost, stolen, or otherwise compromised. Typically, this means that user accounts and computer accounts in Active Directory are disabled, and any issued certificates are revoked. However, additional steps may be required to disconnect current VPN sessions or prevent future remote connections.

Certificate Revocation

When certificates are used for authentication, for example when a device tunnel is deployed, or a user tunnel is configured to use Extensible Authentication Protocol (EAP) with user certificate authentication, immediately revoking issued user and device certificates and publishing a new Certificate Revocation List (CRL) is recommended. However, this will not instantly prevent VPN access because revocation information is cached on the VPN and NPS servers, as well as any online responders. The process of flushing certificate revocation caches is challenging and time consuming as well.

Blocking Users

To immediately prevent users from accessing the VPN, a security group must be created in Active Directory that contains users that will be denied access. In addition, a Network Policy must be created on the Network Policy Server (NPS) that denies access to users belong to this security group.

NPS Configuration

Once the security group has been created, open the NPS management console (nps.msc) and perform the following steps.

  1. Expand Policies.
  2. Right-click Network Policies and choose New.
  3. Enter a descriptive name for the policy in the Policy name field.
  4. Select Remote Access Server (VPN-Dial up) from the Type of network access server drop-down list.
  5. Click Next.
  6. Click Add.
    1. Select User Groups.
    2. Click Add.
    3. Click Add Groups.
    4. Select the security group create for denied users.
    5. Click Ok twice.
  7. Click Next.
  8. Select Access denied.
  9. Click Next four times and click Finish.

Denying Access to Always On VPN Users or Computers

Denying Access to Always On VPN Users or Computers

Once complete, move the deny access policy so that it is before the policy that allows VPN access.

Denying Access to Always On VPN Users or Computers

Device Tunnel Considerations

Since device tunnel connections don’t use the NPS for authentication, blocking devices from establishing Always On VPN connections requires a different technique. Once again, revoking the computer certificate and publishing a new CRL is recommended, but isn’t immediately effective. To address this challenge, it is recommended that the computer certificate issued to the client be retrieved from the issuing CA and placed in the local computer’s Untrusted Certificates store on each VPN server, as shown here.

Note: The certificate must be imported on each VPN server in the organization.

Terminating Connections

Once the guidance above is put in to place, any user or device that is denied access will be unable to connect to the VPN. However, if a user or device is currently connected when these changes are implemented, additional steps must be taken to proactively terminate their existing session. When using Windows Server Routing and Remote Access Service (RRAS) as the VPN server, uUser sessions can be proactively terminated using RRAS management console or PowerShell.

GUI

To terminate an established Always On VPN connection, open the RRAS management console (rrasmgmt.msc), highlight Remote Access Clients, then right-click the client connection and choose Disconnect. Repeat the process for any additional connections established by the user or device.

Denying Access to Always On VPN Users or Computers

PowerShell

Alternatively, Always On VPN connections can also be terminated programmatically using PowerShell. To identify currently connected users on a VPN server, open an elevated PowerShell command window and run the following command.

Get-RemoteAccessConnectionStatistics | Format-Table -AutoSize

Next, to disconnect a user tunnel, identify the User Principal Name (UPN) of the user to disconnect and include it in the following PowerShell command.

Disconnect-VpnUser -UserName “user@corp.example.net”

To disconnect a device tunnel, identify the Fully-Qualified Domain Name (FQDN) of the device to disconnect and include it in the following PowerShell command.

Disconnect-VpnUser -UserName “client1.corp.example.net”

Additional Information

Windows 10 Always On VPN Hands-On Training

Always On VPN Updates to Improve Connection Reliability

Always On VPN Updates to Improve Connection ReliabilityA longstanding issue with Windows 10 Always On VPN is that of VPN tunnel connectivity reliability and device tunnel/user tunnel interoperability. Many administrators have reported that Always On VPN connections fail to establish automatically at times, that only one tunnel comes up at a time (user tunnel or device tunnel, but not both), or that VPN tunnels fail to establish when coming out of sleep or hibernate modes. Have a look at the comments on this post and you’ll get a good understanding of the issues with Always On VPN.

Recent Updates

The good news is that most of these issues have been resolved with recent updates to Windows 10 1803 and 1809. Specifically, the February 19, 2019 update for Windows 10 1803 (KB4487029) and the March 1, 2019 update for Windows 10 1809 (KB4482887) include fixes to address these known issues. Administrators are encouraged to deploy Windows 10 1803 with the latest updates applied when implementing Always On VPN. Windows 10 1809 with the latest updates applied is preferred though.

Persistent Issues

Although initial reports are favorable for these updates and based on my experience the effectiveness and reliability of Windows 10 Always On VPN is greatly improved, there have still been some reports of intermittent VPN tunnel establishment failures.

Possible Causes

During my testing, after applying the updates referenced earlier both device tunnel and user tunnel connections are established much more consistently than before the updates were applied. I did encounter some issues, however. Specifically, when coming out of sleep or hibernate, VPN connections would fail to establish. Occasionally VPN connections would fail after a complete restart.

NCSI

After further investigation it was determined that the connectivity failure was caused by the Network Connectivity Status Indicator (NCSI) probe failing, causing Windows to report “No Internet access”.

Always On VPN Updates to Improve Connection Reliability

Cisco Umbrella Roaming Client

In this instance the NCSI probe failure was caused by the Cisco Umbrella Roaming Client installed and running on the device. The Umbrella Roaming Client is security software that provides client protection by monitoring and filtering DNS queries. It operates by configuring a DNS listener on the loopback address. NCSI probes are known to fail when the DNS server is running on a different interface than is being tested.

Resolution

Microsoft released a fix for this issue in Windows 10 1709. The fix involves changing a group policy setting to disable interface binding when perform DNS lookups by the NCSI. You can enable this setting via Active Directory group policy by navigating to Computer Configuration > Administrative Templates > Network > Network Connectivity Status Indicator > Specify global DNS. Select Enabled and check the option to Use global DNS, as shown here.

Always On VPN Updates to Improve Connection Reliability

For testing purposes this setting can be enabled individual using the following PowerShell command.

New-ItemProperty -Path “HKLM:\SOFTWARE\Policies\Microsoft\Windows\NetworkConnectivityStatusIndicator\” -Name UseGlobalDNS -PropertyType DWORD -Value 1 -Force

Third-Party Software

As Always On VPN connectivity can be affected by NCSI, any third-party firewall or antivirus/antimalware solution could potentially introduce VPN connection instability. Observe NCSI operation closely when troubleshooting unreliable connections with Always On VPN.

Additional Information

Windows 10 1803 Update KB4487029

Windows 10 1809 Update KB4482887

Cisco Umbrella Roaming Client Limited Network Connectivity Warning

Network Connectivity Status Indicator (NCSI) Operation Explained

Always On VPN IKEv2 Features and Limitations

Always On VPN IKEv2 Features and LimitationsThe Internet Key Exchange version 2 (IKEv2) VPN protocol is a popular choice for Windows 10 Always On VPN deployments. IKEv2 is a standards-based IPsec VPN protocol with customizable security parameters that allows administrators to provide the highest level of protection for remote clients. In addition, it provides important interoperability with a variety of VPN devices, including Microsoft Windows Server Routing and Remote Access Service (RRAS) and non-Microsoft platforms such as Cisco, Checkpoint, Palo Alto, and others.

IKEv2 Limitations

IKEv2 is clearly the protocol of choice in terms of security. It supports modern cryptography and is highly resistant to interception. It’s not without some operational challenges, however. Consider the following.

Firewalls

IKEv2 uses UDP ports 500 and 4500 for communication. Unfortunately, these ports are not always open. Often, they are blocked by network administrators to prevent users from bypassing security controls or attackers from exfiltrating data.

Fragmentation

IKEv2 packets can become quite large at times, especially when using client certificate authentication with the Protected Extensible Authentication Protocol (PEAP). This can result in fragmentation occurring at the network layer. Unfortunately, many firewalls and network devices are configured to block IP fragments by default. This can result in failed connection attempts from some locations but not others.

Load Balancing

Load balancing IKEv2 connections is not entirely straightforward. Without special configuration, load balancers can cause intermittent connectivity issues for Always On VPN connections. Guidance for configuring IKEv2 load balancing on the Kemp LoadMaster and the F5 BIG-IP can be found here:

IKEv2 Fragmentation

IKEv2 fragmentation can be enabled to avoid IP fragmentation and restore reliable connectivity. IKEv2 fragmentation is supported in Windows 10 and Windows Server beginning with v1803. Guidance for enabling IKEv2 fragmentation on Windows Server RRAS can be found here. Support for IKEv2 fragmentation on non-Microsoft firewall/VPN devices is vendor-specific. Consult with your device manufacturer for more information.

IKEv2 Security and RRAS

Be advised that the default security settings for IKEv2 on Windows Server RRAS are very poor. The minimum recommended security settings and guidelines for implementing them can be found here.

IKEv2 or TLS?

IKEv2 is recommend for deployments where the highest level of security and protection is required for remote connections. In these scenarios, the sacrifice of ubiquitous availability in favor of ultimate security might be desired.

SSTP or another TLS-based VPN protocol is recommended if reliable operation and connectivity are desired. SSTP and TLS VPNs can be configured to provide very good security by following the security and implementation guidelines found here.

IKEv2 with TLS Fallback

In theory, preferring IKEv2 and falling back to the Secure Socket Tunneling Protocol (SSTP) or another TLS-based VPN protocol when IKEv2 is unavailable would seem like a logical choice. This would ensure the highest level of protection, while still providing reliable connectivity. Unfortunately, the Windows VPN client doesn’t work this way in practice. Details here.

Additional Information

Windows 10 Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Windows 10 Always On VPN IKEv2 Load Balancing with Kemp LoadMaster

Windows 10 Always On VPN IKEv2 Fragmentation

Windows 10 Always On VPN IKEv2 and SSTP Fallback

Windows 10 Always On VPN IKEv2 Security Configuration

Windows 10 Always On VPN Certificate Requirements for IKEv2

Windows 10 Always On VPN Protocol Recommendations for Windows Server RRAS

Always On VPN LockDown Mode

Always On VPN LockDown ModeWhen an Always On VPN connection is provisioned to a Windows 10 client, there’s nothing to prevent a user from disconnecting or even deleting the connection. Some administrators have expressed concern about this, fearful that users may disable the VPN to improve performance or circumvent access controls when force tunneling is enabled. Also, administrators may wish to prevent users from accidentally or purposefully making changes to the configuration, or even deleting the connection entirely.

LockDown Mode

To address these concerns, Microsoft included a feature called LockDown mode for Always On VPN. Once enabled, the following conditions apply.

  • The LockDown VPN connection is always on.
  • The LockDown VPN connection cannot be disabled.
  • The user can’t make changes to or delete the LockDown connection.
  • No other VPN connections can exist on the client.
  • Force tunneling is enabled by default (split tunneling in LockDown mode is not supported).

Challenges with LockDown Mode

Always On VPN LockDown mode brings with it some unique challenges, however. Consider the following.

Limited Protocol Support

LockDown mode only supports IKEv2 and the native (built-in) VPN client. Third-party plug-in provider clients are not supported. IKEv2 is an excellent VPN protocol in terms of security, but operationally speaking it has some serious drawbacks.

Force Tunneling Only

LockDown mode uses force tunneling exclusively. All network traffic must go over the VPN connection. However, if the VPN connection is not available, the client will be unable to access any network resources at all, local or remote.

Captive Portal Issues

LockDown mode prevents clients from connecting to network resources from a network with a captive portal.

On-premises Connectivity

In LockDown mode all network traffic must flow over the VPN tunnel even if the client is on the internal network. This also means that if the VPN server is not reachable internally (unable to resolve public hostname, protocols/ports blocked by internal firewall, unable to route to VPN server, etc.) the client will not be able to access any internal or external network resources at all.

Deleting a LockDown VPN Connection

Deleting a LockDown VPN connection is also challenging. Administrators will find that trying to delete it using the UI or PowerShell often fails. To delete a LockDown Always On VPN connection, use psexec.exe to open an elevated PowerShell command window running in the system context using the following command.

.\psexec.exe -i -s C:\windows\system32\WindowsPowerShell\v1.0\powershell.exe

In the new elevated PowerShell window run the following commands to delete the LockDown VPN connection.

$Namespace = “root\cimv2\mdm\dmmap”
$ClassName = “MDM_VPNv2_01”

$obj = Get-CimInstance -Namespace $Namespace -ClassName $ClassName
Remove-CimInstance -CimInstance $obj

Optionally, download and run Remove-LockDownVPN.ps1 here.

Summary

While Always On VPN LockDown mode might seem like a good idea initially, its implementation is heavy-handed and practically speaking ends up causing more problems than it solves. For administrators that plan to enable this feature, carefully consider the drawbacks and limitations outlined above and their impact on supportability and the user experience.

Additional Information

Windows Always On VPN Device Tunnel Config using Microsoft Intune

Windows 10 Always On VPN Security Configuration 

Windows 10 Always On VPN Hands-On Training

Always On VPN Device Tunnel Configuration using Intune

Always On VPN Device Tunnel Configuration using IntuneA while back I described in detail how to configure a Windows 10 Always On VPN device tunnel connection using PowerShell. While using PowerShell is fine for local testing, it obviously doesn’t scale well. In theory you could deploy the PowerShell script and XML file using System Center Configuration Manager (SCCM), but using Microsoft Intune is the recommended and preferred deployment method. However, as of this writing Intune does not support device tunnel configuration natively. The administrator must create a ProfileXML manually and use Intune to deploy it.

Device Tunnel Prerequisites

I outlined the Always On VPN device tunnel prerequisites in my previous post here. To summarize, the client must be running Windows 10 Enterprise edition and be domain-joined. It must also have a certificate issued by the internal PKI with the Client Authentication EKU in the local computer certificate store.

ProfileXML

To begin, create a ProfileXML for the device tunnel that includes the required configuration settings and parameters for your deployment. You can find a sample Windows 10 Always On VPN device tunnel ProfileXML here.

Note: Be sure to define a custom IPsec policy in ProfileXML for the device tunnel. The default security settings for the IKEv2 protocol (required for the device tunnel) are quite poor. Details here.

Intune Deployment

Open the Intune management console and follow the steps below to deploy an Always On VPN device tunnel using Microsoft Intune.

Create Profile

1. Navigate to the Intune portal.
2. Click Device configuration.
3. Click Profiles.
4. Click Create profile.

Define Profile Settings

1. Enter a name for the VPN connection in the Name field.
2. Enter a description for the VPN connection in the Description field (optional).
3. Select Windows 10 and later from the Platform drop-down list.
4. Select Custom from the Profile type drop-down list.

Always On VPN Device Tunnel Configuration using Intune

Define Custom OMA-URI Settings

1. On the Custom OMA-URI Settings blade click Add.
2. Enter a name for the device tunnel in the Name field.
3. Enter a description for the VPN connection in the Description field (optional).
4. Enter the URI for the device tunnel in the OMA-URI field using the following syntax. If the profile name includes spaces they must be escaped, as shown here.

./Device/Vendor/MSFT/VPNv2/Example%20Profile%Name/ProfileXML

5. Select String (XML file) from the Data Type drop-down list.
6. Click the folder next to the Select a file field and chose the ProfileXML file created previously.
7. Click Ok twice and then click Create.

Always On VPN Device Tunnel Configuration using Intune

Assign Profile

Follow the steps below to assign the Always On VPN device tunnel profile to the appropriate device group.

1. Click Assignments.
2. Click Select groups to include.
3. Select the group that includes the Windows 10 client devices.
4. Click Select.
5. Click Save.

Always On VPN Device Tunnel Configuration using Intune

Demonstration Video

A video demonstration of the steps outlined above can be viewed here.

Additional Information

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN IKEv2 Security Configuration

Deleting a Windows 10 Always On VPN Device Tunnel

Windows 10 Always On VPN Device Tunnel Missing in the UI

Video: Deploying Windows 10 Always On VPN User Tunnel with Microsoft Intune

Always On VPN Training in Switzerland June 2019

Always On VPN Training in Switzerland June 2019I’m pleased to announce that I’ll be bringing my popular Windows 10 Always On VPN hands-on training course to Europe in June this year! Many of you asked about training opportunities outside of the U.S., so I’ve added a class to be held in Bern, Switzerland from June 3-5, 2019.

Sponsored by RealStuff, this three-day hands-on training class will provide comprehensive education covering all aspects of an Always On VPN deployment, including the following.

  • Windows 10 Always On VPN overview
  • Introduction to CSP
  • Infrastructure requirements
  • Planning and design considerations
  • Installation, configuration, and client provisioning

Additional advanced topics will also be covered.

  • Redundancy and high availability
  • Cloud-based deployments
  • Third-party VPN infrastructure and client support
  • Multifactor authentication
  • Always On VPN migration strategies

Windows 10 Always On VPN Hands-On Training Classes for 2018

Don’t miss out on this valuable learning opportunity! Seating is limited, so register today!

Always On VPN Training in Switzerland June 2019

Always On VPN Device Tunnel Does Not Connect Automatically

When configuring a Windows 10 Always On VPN device tunnel, the administrator may encounter a scenario in which the device tunnel does not connect automatically. This can occur even when ProfileXML is configured with the AlwaysOn element set to “true”.

Always On VPN Device Tunnel Does Not Connect Automatically

Manual Connection

An administrator can establish a device tunnel connection manually using rasdial.exe however, indicating no issues with connectivity or authentication that would prevent a successful automatic connection.

Always On VPN Device Tunnel Does Not Connect Automatically

Root Cause

This scenario will occur when the device tunnel configuration is applied to a Windows 10 Professional edition client.

Always On VPN Device Tunnel Does Not Connect Automatically

Device Tunnel Support

The Windows 10 Always On VPN device tunnel is supported only on Windows 10 1709 or later Enterprise edition clients that are domain-joined. To ensure the device tunnel connects automatically, upgrade to Windows 10 Enterprise 1709 or later and join it to a domain.

Always On VPN Device Tunnel Does Not Connect Automatically

Source: https://docs.microsoft.com/en-us/windows-server/remote/remote-access/vpn/vpn-device-tunnel-config#device-tunnel-requirements-and-features

Additional Information

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN Device Tunnel Missing in the Windows UI

Deleting a Windows 10 Always On VPN Device Tunnel

%d bloggers like this: