Always On VPN Book Available for Pre-Order

Great news! My new book, Implementing Always On VPN, is now available for pre-order on Amazon.com. This new book, scheduled for release in late 2021, is a comprehensive implementation guide for Windows 10 Always On VPN. Drawing on many years of experience deploying Always On VPN for organizations worldwide, it covers all aspects of an Always On VPN deployment, including planning and design, prerequisite gathering, infrastructure preparation, and client deployment.

In addition, it contains detailed, prescriptive guidance for advanced configuration options such as application and traffic filtering and proxy server configuration. Cloud deployments using Azure VPN gateway and Virtual WAN are covered, and it includes guidance for configuring Azure MFA and Conditional Access.

Also, the book includes thorough guidance for provisioning certificates using Microsoft Endpoint Manager/Intune using both PKCS and SCEP. It outlines options for high availability for VPN and authentication infrastructure and provides details for ongoing system maintenance and operational support.

Finally, the book has an entire chapter dedicated to troubleshooting and resolving common (and not so common!) issues encountered with Windows 10 Always On VPN.

Reserve your copy today. Pre-order Implementing Always On VPN now!

Chapter List

  1. Always On VPN Overview
  2. Plan an Always On VPN Deployment
  3. Prepare the Infrastructure
  4. Configure Windows Server for Always On VPN
  5. Provision Always On VPN clients
  6. Advanced Configuration
  7. Cloud Deployments
  8. Deploy Certificates with Intune
  9. Integrating Azure MFA
  10. High Availability
  11. Monitor and Report
  12. Troubleshooting

Always On VPN Short Name Access Failure

Using Microsoft Endpoint Manager (Intune), administrators can provision Always On VPN to devices that are Azure AD joined only. Users accessing on-premises resources from these devices can still use seamless single sign-on, making this deployment option popular for organizations moving to the cloud.

Short Names

After deploying Always On VPN to Windows 10 devices that are Azure AD joined only and configured to use client certificate authentication, administrators may find that users cannot access on-premises resources by their short name, such as \\app1. The connection fails and returns the following error message.

“Windows can’t find <servername/sharename>. Check the spelling and try again.”

FQDN

Interestingly, on-premises resources are accessible using their fully qualified domain name (FQDN), such as \\app1.corp.example.net.

Troubleshooting

Testing name resolution using the short name works as expected, and the resource is reachable at the network layer, as shown here.

Workaround

This issue is related to how Windows performs authentication when connected via VPN. To resolve this issue, edit the rasphone.pbk file and change the value of UseRasCredentials to 0. Rasphone.pbk can be found in the $env:AppData\Microsoft\Network\Connections\Pbk folder.

After updating this setting, restart the VPN connection for the change to take effect.

Proactive Remediations

While helpful for testing, editing rasphone.pbk manually obviously does not scale well. To address this, consider using Intune Proactive Remediations. Intune Proactive Remediations allows administrators to deploy detection and remediation PowerShell scripts to monitor specific settings and update them if or when they change. Proactive Remediations will ensure the setting is applied consistently across all managed endpoints.

GitHub Repository

I have created a new GitHub repository dedicated to PowerShell scripts for Endpoint Manager Proactive Remediations for Always On VPN. There you will find detection and remediation scripts for the UseRasCredentials settings change described in this article.

Additional Information

Always On VPN Endpoint Manager Proactive Remediation Scripts on GitHub

Endpoint Manager Proactive Remediations Tutorial

Always On VPN and Autopilot Hybrid Azure AD Join

Always On VPN and Autopilot Hybrid Azure AD Join

Windows Autopilot is a cloud-based technology that administrators can use to configure new devices wherever they may be, whether on-premises or in the field. Devices provisioned with Autopilot are Azure AD joined by default and managed using Microsoft Endpoint Manager. Optionally, an administrator can enable hybrid Azure AD join by also joining the device to an on-premises Active Directory domain using a domain join configuration profile in conjunction with the offline domain-join connector. Although enabling hybrid Azure AD join might sound appealing, there are specific deployment scenarios that present some rather unique and challenging problems when using this option.

Offline Hybrid Azure AD Join

For field-based devices, the device must have connectivity to a domain controller to support the initial login when the user has no local cached credentials. The Always On VPN device tunnel can be deployed in this scenario to provide connectivity and allow the user to log in to a new device the first time without being on-premises. The Always On VPN device tunnel is easily deployed using a Microsoft Endpoint Manager configuration profile. Certificates required to support the device tunnel can be deployed with Microsoft Endpoint Manager and one of the certificate connectors for Microsoft Endpoint Manager.

Windows 10 Professional

If a Windows 10 Professional device is configured using Autopilot, and hybrid Azure AD joined is enabled, the Always On VPN device tunnel can still be provisioned, but it won’t start automatically because it requires Enterprise Edition to be fully functional. This prevents the user from being able to logon the first time. The device must be upgraded to Enterprise Edition before the first user logon. There are multiple ways to accomplish this depending on the deployment scenario and activation requirements.

Multiple Activation Key

The easiest way to upgrade Windows 10 Professional to Enterprise Edition is to obtain a Multiple Activation Key (MAK) and deploy that to clients using a Microsoft Endpoint Manager configuration profile. Follow the steps below to create a configuration profile to perform this upgrade.

  1. Open the Microsoft Endpoint Manager console and click on Devices > Configuration Profiles.
  2. Click Create profile.
  3. Select Windows 10 and later in the Platform drop-down list.
  4. Select Templates in the Profile type drop-down list.
  5. Select Edition upgrade and mode switch from the list of templates.
  6. Click Create.

Use the following steps to configure the settings for the configuration profile.

  1. Enter a descriptive name for the configuration profile in the Name field.
  2. Enter a description for the profile in the Description field (optional).
  3. Click Next.
  4. Expand the Edition Upgrade section and select Windows 10 Enterprise from the Edition to upgrade to drop-down list.
  5. Enter your multiple activation product key in the Product Key field.

    Always On VPN and Autopilot Hybrid Azure AD Join

Once complete, assign the configuration profile to the appropriate groups and click Create.

KMS Activation

If Key Management Service (KMS) activation is required, follow the steps listed previously for MAK. Enter the KMS client setup key for Windows 10 Enterprise which is NPPR9-FWDCX-D2C8J-H872K-2YT43. The device will complete KMS activation when it can connect to the on-premises KMS host.

Subscription Activation

Windows 10 Enterprise Edition licensing is included in some Microsoft 365 subscriptions. This poses a unique challenge for hybrid Azure AD join scenarios, however. Specifically, subscription activation is a “step-up” process that requires Windows 10 Professional to have been successfully activated previously. Also, this occurs after the user logs on, but the user cannot log on unless the device tunnel is active. Catch 22!

Workaround

A multi-step process is required to address the limitations imposed by subscription activation. To begin, the device must be upgraded to Enterprise Edition, so the device tunnel is available for the initial user logon. This is a temporary, one-time upgrade to Enterprise Edition solely for the purpose of getting the device tunnel to connect and allow the user to authenticate.

To begin, download this PowerShell script and follow the steps below to deploy it to Windows 10 devices using Microsoft Endpoint Manager.

  1. Open the Microsoft Endpoint Manager console and click on Devices > Scripts.
  2. Click Add and select Windows 10.
  3. Enter a descriptive name for the configuration profile in the Name field.
  4. Enter a description for the profile in the Description field (optional).
  5. Click Next.
  6. Enter the location of the PowerShell script in the Script location field.
  7. Click Next, then assign the script to the appropriate device group(s) and click Add.

The PowerShell script will automatically install the KMS client setup key for Windows 10 Enterprise Edition, then restart the network interfaces to ensure the device tunnel starts. This will immediately upgrade the client device to Windows 10 Enterprise Edition and allow the user to authenticate.

Subscription activation with a step-up upgrade to Enterprise Edition still requires that Windows 10 Professional be activated first. To accomplish this, the embedded Windows 10 Professional key must be re-installed on the client. To do this, download this PowerShell script and follow the same steps listed previously to deploy a PowerShell script with Microsoft Endpoint Manager. However, this script should be assigned to users, not devices.

Once this script is run on the client it will be downgraded (temporarily) to Windows 10 Professional edition. After activation is successful, subscription activation will once again upgrade the client to Windows 10 Enterprise Edition.

Considerations

As you can see, the process of getting a Windows 10 Professional edition client onboarded in a hybrid Azure AD joined scenario is somewhat complex. My advice is to avoid this scenario whenever possible. Access to on-premises resources with the Always On VPN user tunnel with full single sign-on support is still available for users on Windows 10 devices that are Azure AD joined only. Unless there is a specific requirement to manage client devices using on-premises Active Directory and group policy, consider choosing native Azure AD join with Autopilot and manage devices using Microsoft Endpoint Manager exclusively.

Special Thanks

I would like to extend a special thank you to everyone in the Microsoft Endpoint Manager community who provided valuable input and feedback for me on this topic, especially John Marcum, Michael Niehaus, and Sandy Zeng. Follow the #MEMCM hashtag on Twitter to keep up on all things Microsoft Endpoint Manager.

Additional Information

Overview of Windows Autopilot

Windows 10 Subscription Activation

Windows 10 Always On VPN Class-Based Default Route and Microsoft Endpoint Manager

Windows 10 Always On VPN Device Tunnel and Custom Cryptography in Microsoft Endpoint Manager

Always On VPN Class-Based Default Route and Intune

`Always On VPN Class-Based Default Route and IntuneIn a recent post, I described how to configure routing for Windows 10 Always On VPN clients. In that article, I shared guidance for disabling the class-based default route in favor of defining specific routes for the VPN client. While this is easy enough to do when you use custom XML (deployed via PowerShell, SCCM, or Intune), there is a known limitation when using the native Intune UI that could present some challenges.

Intune VPN Profile Configuration

Defining specific routes is easy to do in Intune using the native VPN configuration profile. In the Configuration settings expand Split Tunneling and click Enable. The administrator can then add routes by entering their Destination prefix and Prefix size, as shown here.

Always On VPN Class-Based Default Route and Intune

Class-Based Default Route

The limitation with using Intune to configure routes is that there is currently no option to disable the class-based default route as there is with custom XML. This means the routes shown in the example above will be added to the client, but the class-based route will also be added automatically, as shown here (class-based default route highlighted with the arrow).

Always On VPN Class-Based Default Route and Intune

Considerations

In most cases, the inclusion of the class-based default route along with the administrator-defined routes will not be a problem. However, in some scenarios, it could yield unexpected results. Specifically, Always On VPN clients may have unintended access to some networks over the VPN tunnel. This is most significant for the Always On VPN device tunnel, where it is common to limit access to only specific resources using individual host routes.

Workaround

Today there is no option to disable the class-based default route using the native Intune UI. Your only option is to deploy the Always On VPN profile using custom XML, as described here.

Additional Information

Deploying Windows 10 Always On VPN with Intune and Custom XML

Deploying Windows 10 Always On VPN Device Tunnel with Intune and Custom XML

Windows 10 Always On VPN Routing Configuration

Windows 10 Always On VPN Device Tunnel Operation and Best Practices

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in IntuneMicrosoft recently announced support for native Windows 10 Always On VPN device tunnel configuration in Intune. Previously administrators had to use the complicated and error-prone custom XML configuration to deploy the Windows 10 Always On VPN device tunnel to their clients. That is no longer required with this recent Intune update. In addition, administrators may now specify custom cryptography settings for IPsec Security Association (SA) parameters for IKEv2 for both device tunnel and user tunnel connections. This effectively eliminates the requirement to use custom ProfileXML for most deployment scenarios.

Device Tunnel Configuration in Intune

Follow the steps below to configure and deploy a Windows 10 Always On VPN device tunnel using the native Intune user interface.

Create Profile

1. Open the Microsoft Endpoint Manager admin center (devicemanagement.microsoft.com).
2. Navigate to Devices > Configuration Policies.
3. Click Create profile.
4. Choose Windows 10 and later from the Platform drop-down list.
5. Choose VPN from the Profile drop-down list.
6. Click Create.

Profile Settings

Proceed with the profile configuration as you would normally, providing the VPN connection name, VPN server name(s), and choosing the option to register IP addresses with internal DNS. Next use the following steps to define a device tunnel connection and specify custom cryptography for IPsec SA parameters for IKEv2.

Configure a Device Tunnel

1. Select IKEv2 from the Connection type drop-down list.
2. Click Enable in the Always On section.
3. Select Machine Certificates from the Authentication method section.
4. If the computer certificate is provisioned using Intune, select the client authentication certificate (not required if the computer certificate is provisioned using on-premises Active Directory).
5. Click Enable in the Device Tunnel section.

Define Custom Cryptography

Follow the steps below to implement minimum security baseline cryptography settings for IKEv2.

IKE Security Association Parameters

1. Select AES-128 from the Encryption algorithm drop-down list.
2. Select SHA2-256 from the Integrity check algorithm drop-down list.
3. Select 14 from the Diffie-Hellman group drop-down list.

Child Security Association Parameters

1. Select CBC-AES-128 from the Cipher transform algorithm drop-down list.
2. Select HMAC-SHA256-128 from the Authentication transform algorithm drop-down list.
3. Select 14 from the Perfect forward secrecy (pfs) group drop-down list.

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Important Note: The IPsec security association parameters outlined above are the minimum recommend security baseline for IKEv2 and are compatible with all supported versions of Windows Server RRAS. It is recommended that authenticated cipher suites (GCM) be used whenever possible. However, GCM ciphers are not supported for encryption prior to Window Server 1803. Administrators should review these security settings and adjust the parameters to meet their specific security requirements.

Server Configuration

When defining custom cryptography settings for IKEv2 for device tunnel deployment, it is critical that the server be configured using identical parameters. Failure to use matching cryptography settings on the client and server will result in error code 13868, which indicates an IPsec policy mismatch.

A PowerShell script to configure IKEv2 security association parameter minimum security baselines on the RRAS server as outlined above can be found here. The commands to make these changes on the Azure VPN gateway can be found in this post.

Caveats

While Microsoft has made great strides to ensure better support for Always On VPN configuration using the native Intune UI, there are a few critical settings are still not supported. In these scenarios the administrator must deploy Always On VPN using custom XML, as described here and here.

Custom Cryptography

IKEv2 custom cryptography settings are only exposed when IKEv2 is selected as the connection type. It appears that defining custom cryptography settings for IKEv2 when the connection type is set to Automatic is not supported at this time. If you wish to specify the Automatic connection type and use custom cryptography settings for IKEv2 you will need to deploy the device tunnel using custom ProfileXML.

IPv6

IPv6 routing when configuring split tunneling for Always On VPN in Intune is not supported.

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Additional Information

Windows 10 Always On VPN Policy Mismatch Error

Windows 10 Always On VPN Device Tunnel with Azure VPN Gateway

Windows 10 Always On VPN IKEv2 Load Balancing and NAT

Windows 10 Always On VPN IKEv2 Fragmentation

Windows 10 Always On VPN IKEv2 Security Configuration

Always On VPN Split vs. Force Tunneling

Always On VPN Split vs. Force TunnelingDuring the planning phase of a Windows 10 Always On VPN implementation the administrator must decide between two tunneling options for VPN client traffic – split tunneling or force tunneling. When split tunneling is configured, only traffic for the on-premises network is routed over the VPN tunnel. Everything else is sent directly to the Internet. With force tunneling, all client traffic, including Internet traffic, is routed over the VPN tunnel. There’s been much discussion recently on this topic, and this article serves to outline the advantages and disadvantages for both tunneling methods.

Force Tunneling

Force tunneling is typically enabled to meet the following requirements.

Visibility and Control

By routing all the client’s Internet traffic over the VPN tunnel, administrators can inspect, filter, and log Internet traffic using existing on-premises security solutions such as web proxies, content filters, or Next Generation Firewalls (NGFW).

Privacy

Enabling force tunneling ensures privacy and protection of all Internet communication. By routing all Internet traffic over the VPN, administrators can be certain that all communication from the Always On VPN client is encrypted, even when clients access unencrypted web sites or use untrusted or insecure wireless networks.

Force Tunneling Drawbacks

While configuring force tunneling for Always On VPN has some advantages, it comes with some serious limitations as well.

Poor User Experience

User experience is often degraded when all Internet traffic is routed over the VPN. These suboptimal network paths increase latency, and VPN encapsulation and encryption overhead increase fragmentation, leading to reduced throughput. Most Internet traffic is already encrypted in some form, and encrypting traffic that is already encrypted makes the problem even worse. In addition, force tunneling short-circuits geographic-based Content Delivery Networks (CDNs) further reducing Internet performance. Further, location-based services are often broken which can lead to improper default language selection or inaccurate web search results.

Increased Resource Consumption

Additional resources may need to be provisioned to support force tunneling. With corporate and Internet traffic coming over the VPN, more CPU, memory, and network resources may be required. Deploying additional VPN servers and higher throughput load balancers to support the increase in network traffic may also be necessary. Force tunneling also places higher demands on Internet Service Provider (ISP) links to the corporate datacenter.

Split Tunneling

The alternative to force tunneling is “split tunneling”. With split tunneling configured, only traffic destined for the internal corporate network is routed over the VPN. All other traffic is sent directly to the Internet. Administrators define IP networks that should be routed over the VPN, and those networks are added to the routing table on the VPN client.

Security Enforcement

The challenge of providing visibility and control of Internet traffic with split tunneling enabled can be met using a variety of third-party security solutions. Microsoft Defender ATP recently introduced support for web content filtering. Also, there are numerous cloud-based security offerings from many vendors that allow administrators to monitor and control client-based Internet traffic. Zscaler and Cisco Umbrella are two popular solutions, and no doubt there are many more to choose from.

Recommendations

The general guidance I provide customers is to use split tunneling whenever possible, as it provides the best user experience and reduces demands on existing on-premises infrastructure. Enabling split or force tunneling is ultimately a design decision that must be made during the planning phase of an Always On VPN implementation project. Both configurations are supported, and they each have their merits.

In today’s world, with many applications accessible via public interfaces, force tunneling is an antiquated method for providing visibility and control for managed devices in the field. If required, investigate the use of Microsoft or other third-party solutions that enforce security policy in place without the requirement to backhaul client Internet traffic to the datacenter over VPN for inspection, logging, and filtering.

Additional Information

Whitepaper: Enhancing VPN Performance at Microsoft

Whitepaper: How Microsoft Is Keeping Its Remote Workforce Connected

Microsoft Defender ATP Web Content Filtering

Always On VPN Force Tunneling with Office 365 Exclusions

Always On VPN Force Tunneling with Office 365 ExclusionsWith the COVID-19 global pandemic forcing nearly everyone to work from home these days, organizations that implemented force tunneling for their VPN clients are likely encountering unexpected problems. When force tunneling is enabled, all client traffic, including Internet traffic, is routed over the VPN tunnel. This often overloads the VPN infrastructure and causes serious slowdowns, which degrades the user experience and negatively impacts productivity. This is especially challenging because so many productivity applications like Microsoft Office 365 are optimized for Internet accessibility. It is one of the main reasons that force tunneling is not generally recommended.

Force Tunneling with Exceptions

When enabling split tunneling is not an option, administrators frequently ask about enabling force tunneling with some exceptions. The most common configuration is enabling force tunneling while still allowing Office 365 traffic to go outside of the tunnel. While this is something that third-party solutions do easily, it has been a challenge for Always On VPN. Specifically, Always On VPN has no way to route traffic by hostname or Fully-Qualified Domain Name (FQDN).

Exclusion Routes

To address this challenge, the administrator can configure Exclusion Routes. Exclusion Routes are supported in Windows 10 1803 with update KB4493437, Windows 10 1809 with update KB4490481, and Windows 10 1903/1909.

Exclusion routes are defined in the client routing table that are excluded from the VPN tunnel. The real challenge here is determining all the required IP addresses required for Office 365.

Microsoft Published Guidance

Given current events and the heavy demands placed on enterprises supporting exclusively remote workforces, Microsoft has recently published guidance for configuring Always On VPN force tunneling while excluding Office 365 traffic. Their documentation includes all the required IP addresses to configure exclusions for. This will make it much simpler for administrators to configure Always On VPN to support this unique scenario. The following links provide detailed configuration guidance for enabling force tunneling for Always On VPN with exceptions.

Additional Information

Windows 10 Always On VPN Split vs. Force Tunneling

Windows 10 Always On VPN Routing Configuration

Windows 10 Always On VPN Lockdown Mode

Always On VPN Device Tunnel with Azure VPN Gateway

Always On VPN Device Tunnel with Azure VPN GatewayAlways On VPN is infrastructure independent, which allows for many different deployment scenarios including on-premises and cloud-based. In Microsoft Azure, the Azure VPN gateway can be configured to support Windows 10 Always On VPN client connections in some scenarios. Recently I wrote about using the Azure VPN gateway for Always On VPN user tunnels. In this post I’ll describe how to configure the Azure VPN gateway to support an Always On VPN device tunnel.

Limitations

There are a few crucial limitations that come with using the Azure VPN gateway for Always On VPN. Importantly, the Azure VPN gateway can support either user tunnels or device tunnels, not both at the same time. In addition, Azure supports only a single VPN gateway per VNet, so deploying an additional VPN gateway in the same VNet to support Always On VPN user tunnels is not an option.

Root CA Certificate

The Always On VPN device tunnel is authenticated using a machine certificate issued to domain-joined Windows 10 Enterprise edition clients by the organization’s internal Certification Authority (CA). The CA’s root certificate must be uploaded to Azure for the VPN gateway to authorize device tunnel connections. The root CA certificate can be exported using the Certification Authority management console (certsrv.msc) or via the command line.

Export Certificate – GUI

Follow the steps below to export a root CA certificate using the Certification Authority management console.

1. On the root CA server, open the Certification Authority management console.
2. Right-click the CA and choose Properties.
3. Select the CA server’s certificate and choose View Certificate.
4. Select the Details tab and click Copy to File.
5. Click Next.
6. Choose Base-64 encoded X.509 (.CER).

Always On VPN Device Tunnel with Azure VPN Gateway

7. Click Next.
8. Enter a location to save the file to.
9. Click Next, Finish, and Ok.

Export Certificate – Command Line

Follow the steps below to export a root CA certificate using the command line.

1. On the root CA server, open an elevated command window (not a PowerShell window).
2. Enter certutil.exe -ca.cert root_certificate.cer.
3. Enter certutil.exe -encode root.cer root_certificate_base64.cer.

Copy Public Key

1. Open the saved root certificate file using Notepad.
2. Copy the file contents between the BEGIN CERTIFICATE and END CERTIFICATE tags, as shown here. Use caution and don’t copy the carriage return at the end of the string.

Always On VPN Device Tunnel with Azure VPN Gateway

Point-to-Site Configuration

The Azure VPN gateway must be deployed as a Route-Based gateway to support point-to-site VPN connections. Detailed requirements for the gateway can be found here. Once the VPN gateway has been provisioned, follow the steps below to enable point-to-site configuration for Always On VPN device tunnels.

1. In the navigation pane of the Azure VPN gateway settings click Point-to-site configuration.
2. Click the Configure now link and specify an IPv4 address pool to be assigned to VPN clients. This IP address pool must be unique in the organization and must not overlap with an IP address ranges defined in the Azure virtual network.
3. From the Tunnel type drop-down list select IKEv2.
4. In the Root certificates section enter a descriptive name for the certificate in the Name field.
5. Copy and paste the Base64 encoded public key copied previously into the Public certificate data field.
6. Click Save to save the configuration.

Always On VPN Device Tunnel with Azure VPN Gateway

VPN Client Configuration

To support the Always On VPN device tunnel, the client must have a certificate issued by the internal CA with the Client Authentication Enhanced Key Usage (EKU). Detailed guidance for deploying a Windows 10 Always On VPN device tunnel can be found here.

Download VPN Configuration

1. Click Point-to-site configuration.
2. Click Download VPN client.
3. Click Save.
4. Open the downloaded zip file and extract the VpnSettings.xml file from the Generic folder.
5. Copy the FQDN in the VpnServer element in VpnSettings.xml. This is the FQDN that will be used in the template VPN connection and later in ProfileXML.

Create a Test VPN Connection

It is recommended to create a test VPN connection to perform validation testing of the Azure VPN gateway before provisioning an Always On VPN device tunnel broadly. On a domain-joined Windows 10 enterprise client, create a new VPN connection using IKEv2 with machine certificate authentication. Use the VPN server FQDN copied from the VpnSettings.xml file previously.

Always On VPN Device Tunnel with Azure VPN Gateway

Create an Always On VPN Connection

Once the VPN has been validated using the test profile created previously, an Always On VPN profile can be created and deployed using Intune, SCCM, or PowerShell. The following articles can be used for reference.

Deploy Always On VPN device tunnel using PowerShell

Deploy Always On VPN device tunnel using Intune

IKEv2 Security Configuration

The default IKEv2 security parameters used by the Azure VPN gateway are better than Windows Server, but the administrator will notice that a weak Diffie-Hellman (DH) key (Group 2 – 1024 bit) is used during IPsec phase 1 negotiation.

Always On VPN Device Tunnel with Azure VPN Gateway

Use the following PowerShell commands to update the default IKEv2 security parameters to recommended baseline defaults, including 2048-bit keys (DH group 14) and AES-128 for improved performance.

Connect-AzAccount
Select-AzSubscription -SubscriptionName [Azure Subscription Name]

$Gateway = [Gateway Name]
$ResourceGroup = [Resource Group Name]

$IPsecPolicy = New-AzVpnClientIpsecParameter -IpsecEncryption AES128 -IpsecIntegrity SHA256 -SALifeTime 28800 -SADataSize 102400000 -IkeEncryption AES128 -IkeIntegrity SHA256 -DhGroup DHGroup14 -PfsGroup PFS14

Set-AzVpnClientIpsecParameter -VirtualNetworkGatewayName $Gateway -ResourceGroupName $ResourceGroup -VpnClientIPsecParameter $IPsecPolicy

Note: Be sure to update the cryptography settings on the test VPN connection and in ProfileXML for Always On VPN connections to match the new VPN gateway settings. Failing to do so will result in an IPsec policy mismatch error.

Additional Information

Windows 10 Always On VPN User Tunnel with Azure VPN Gateway

Windows 10 Always On VPN IKEv2 Security Configuration

Windows 10 Always On VPN Device Tunnel Configuration using Microsoft Intune

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN Options for Azure Deployments

Windows 10 Always On VPN IKEv2 Features and Limitations

Microsoft Intune NDES Connector Error 0x80004003

Microsoft Intune NDES Connector Error 0x80004003To support certificate deployment for non-domain Windows 10 Always On VPN clients, a Windows Server with the Network Device Enrollment Service (NDES) role can be provisioned on-premises. In addition, the Microsoft Intune Connector must be installed and configured on the NDES server to allow Intune-managed clients to request and receive certificates from the on-premises Certification Authority (CA) server.

Connection Status Error

After installing the Microsoft Intune Connector, the administrator may encounter the following error message.

“An error occurred while connecting to the Intune Service. Error code is 0x80004003. The NDES Connector will retry the connection as soon as possible.”

 Microsoft Intune NDES Connector Error 0x80004003

IE Enhanced Security Configuration

This error can occur if Internet Explorer Enhanced Security Configuration (ESC) is enabled. To resolve this issue, disable ESC for administrators and users by opening the Server Manager on the NDES server and performing the following steps.

1. In the navigation pane click Local Server.
2. Click the On link next to IE Enhanced Security Configuration.
3. Click Off in the Administrators section.
4. Click Off in the Users section
5. Click Ok.

Microsoft Intune NDES Connector Error 0x80004003

Once complete, restart the NDES Connector service using the following PowerShell command.

Restart-Service NDESConnectorSvc -PassThru

Additional Configuration

Microsoft Intune NDES Connector Setup Wizard Ended Prematurely

Microsoft Intune NDES Connector Setup Wizard Ended Prematurely

Microsoft Intune NDES Connector Setup Wizard Ended PrematurelyA Windows Server with the Network Device Enrollment Service (NDES) role can be provisioned on-premises to support certificate deployment for non-domain Windows 10 Always On VPN clients. In addition, the Microsoft Intune Connector must be installed and configured on the NDES server to allow Intune-managed clients to request and receive certificates from the on-premises Certification Authority (CA) server.

Setup Wizard Ended Prematurely

When installing the Microsoft Intune Connector, the administrator may encounter a scenario where the setup wizard fails with the following error message.

“Microsoft Intune Connector Setup Wizard ended prematurely because of an error. Your system has not been modified. To install this program at a later time, run Setup Wizard again. Click the Finish button to exit the Setup Wizard.”

Microsoft Intune NDES Connector Setup Wizard Ended Prematurely

Cryptographic Service Provider

This error can occur if the NDES server certificate template is configured to use the Key Storage Provider cryptography service provider (CSP). When configuring the certificate template for the NDES server, the Legacy Cryptography Service Provider must be used, as shown here.

Microsoft Intune NDES Connector Setup Wizard Ended Prematurely

Additional Information

Deploying Windows 10 Always On VPN with Intune using Custom ProfileXML

Windows 10 Always On VPN Device Tunnel Configuration using Microsoft Intune

Deploying Windows 10 Always On VPN with Microsoft Intune

 

%d bloggers like this: