Uninstalling and Removing DirectAccess

Uninstalling and Removing DirectAccess This web site is primarily dedicated to installing, configuring, managing, and troubleshooting DirectAccess on Windows Server 2012 R2 and Windows Server 2016. However, there’s little documentation on how to properly uninstall and remove DirectAccess. This post provides guidance for gracefully uninstalling and removing DirectAccess after it has been deployed.

DirectAccess Clients

It is recommended that all clients be deprovisioned prior to decommissioning a DirectAccess deployment. This is especially true if the Network Location Server (NLS) is hosted on the DirectAccess server itself. Remove all client computers from the DirectAccess client security group or unlink DirectAccess client settings GPOs (but don’t delete them!) from any OUs where they are applied. Allow sufficient time for all clients to process security group membership changes and update group policy before uninstalling DirectAccess.

Network Location Server

If the NLS is installed separate from the DirectAccess server, it is recommended that it remain online for a period of time after DirectAccess has been decommissioned. Clients will be unable to access local resources if they still have DirectAccess client settings applied and the NLS is offline. Keeping the NLS online prevents this from happening. If this does happen, you’ll need to delete the Name Resolution Policy Table (NRPT) on the client to restore connectivity. To do this, run the following command in an elevated PowerShell command window and restart the computer.

Get-Item -Path “HKLM:\SOFTWARE\Policies\Microsoft\Windows NT\DNSClient\DnsPolicyConfig” | Remove-Item -Confirm:$false

Uninstall DirectAccess

It is not recommended to decommission DirectAccess by simply turning off all DirectAccess servers and manually deleting all of the associated group policy objects (GPOs) in Active Directory. A better way is to gracefully remove DirectAccess using the GUI or PowerShell.

To uninstall DirectAccess using the GUI, open the Remote Access Management console, highlight DirectAccess and VPN, and then click Remove Configuration Settings in the Tasks pane.

Uninstalling and Removing DirectAccess

Alternatively, DirectAccess can be removed by running the following command in an elevated PowerShell command window.

Uninstall-RemoteAccess -Force

Additional Resources

DirectAccess Network Location Server (NLS) Guidance

DirectAccess Network Location Server (NLS) Deployment Considerations for Large Enterprises

Implementing DirectAccess with Windows Server 2016

Troubleshooting DirectAccess IP-HTTPS Error Code 0x800b0109

A Windows 7 or Windows 8.x/10 client may fail to establish a DirectAccess connection using the IP-HTTPS IPv6transition technology. When troubleshooting this issue, running ipconfig.exe show that the media state for the tunnel adapter iphttpsinterface is Media disconnected.

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

Running the Get-NetIPHttpsState PowerShell command on Windows 8.x/10 clients or the netsh interface httpstunnel show interface command on Windows 7 clients returns an error code of 0x800b0109 with an interface status Failed to connect to the IPHTTPS server; waiting to reconnect.

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

Error code 0x800b0109 translates to CERT_E_UNTRUSTEDROOT, indicating the client was unable to establish an IP-HTTPS connection because the certificate presented during the SSL handshake was issued by a certification authority that was not trusted. This commonly occurs when the DirectAccess server is configured with an SSL certificate issued by the internal PKI and DirectAccess clients are provisioned using offline domain join without using the /rootcacerts switch.

Troubleshooting DirectAccess IP-HTTPS Error 0x800b0109

To resolve IP-HTTPS error code 0x800b0109, obtain the root certificate for the certificate authority that issued the SSL certificate used for IP-HTTPS and import it in to the DirectAccess client’s Trusted Root Certification Authorities local computer certificate store. Once complete, restart the IP helper service to reinitiate an IP-HTTPS connection.

Additional Information

Provisioning DirectAccess Clients using Windows Offline Domain Join

Troubleshooting DirectAccess IP-HTTPS Error Code 0x90320

Troubleshooting DirectAccess IP-HTTPS Error 0x2af9

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

Implementing DirectAccess with Windows Server 2016

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

A Windows 7 or Windows 8.x/10 client may fail to establish a DirectAccess connection using the IP-HTTPS IPv6 transition technology. When troubleshooting this issue, running ipconfig.exe shows that the media state for the tunnel adapter iphttpsinterface is Media disconnected.

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

Running the Get-NetIPHttpsState PowerShell command on Windows 8.x/10 clients or the netsh interface httpstunnel show interface command on Windows 7 clients returns and error code of 0x80090326, with an interface status Failed to connect to the IPHTTPS server; waiting to reconnect.

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

Error code 0x80090326 translates to SEC_E_ILLEGAL_MESSAGE, indicating the client encountered a fatal error during the SSL handshake.

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

There are a number of things that can cause this to happen. The most common scenario occurs when an Application Delivery Controller (ADC) is improperly configured to perform client certificate authentication for IP-HTTPS connections. Common examples are an incorrect or missing root CA certificate, or null SSL/TLS cipher suites not enabled when supporting Windows 8.x/10 clients.

To troubleshoot DirectAccess IP-HTTPS error 0x80090326, perform a network trace on the DirectAccess client and observe the TLS handshake for clues as to which configuration error is the culprit. If the TLS handshake failure occurs immediately after the client sends a Client Hello, it is likely that the ADC does not have null cipher suites enabled.

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

If the TLS handshake failure occurs after the Server Hello, it is likely that the ADC is configured to perform client certificate authentication incorrectly, or the client does not have a valid certificate.

Troubleshooting DirectAccess IP-HTTPS Error 0x80090326

IP-HTTPS error 0x80090326 can also occur if an intermediary device is performing SSL/TLS inspection or otherwise tampering with the TLS request. It can also happen if the edge firewall and/or NAT device is forwarding IP-HTTPS connections to the wrong internal server, or if the firewall itself is responding to the HTTPS connection request. Remember, just because the server is responding on TCP port 443 doesn’t necessarily mean that it is the DirectAccess server responding!

Additional Information

Troubleshooting DirectAccess IP-HTTPS Error Code 0x90320

Troubleshooting DirectAccess IP-HTTPS Error 0x2af9

DirectAccess Troubleshooting Consulting Services

Implementing DirectAccess with Windows Server 2016

Troubleshooting DirectAccess IP-HTTPS Error Code 0x90320

A Windows 7 or Windows 8.x/10 client may fail to establish a DirectAccess connection using the IP-HTTPS IPv6 transition technology. When troubleshooting this issue, running ipconfig.exe shows that the media state for the tunnel adapter iphttpsinterface is Media disconnected.

Troubleshooting DirectAccess IP-HTTPS Error Code 0x90320

Running the Get-NetIPHttpsState PowerShell command on Windows 8.x/10 clients or the netsh interface httpstunnel show interface command on Windows 7 clients returns an error code of 0x90320, with an interface status Failed to connect to the IPHTTPS server; waiting to reconnect.

Troubleshooting DirectAccess IP-HTTPS Error Code 0x90320

Error code 0x90320 translates to SEC_I_INCOMPLETE_CREDENTIALS, indicating the client was unable to authenticate to the DirectAccess server during the TLS handshake when establishing the IP-HTTPS IPv6 transition tunnel. This occurs when the DirectAccess server or an Application Delivery Controller (ADC) is configured to perform client certificate authentication for IP-HTTPS connections. The client may fail to authenticate if it does not have a valid certificate issued by the organization’s internal certification authority (CA) or if the DirectAccess server or ADC is configured to perform IP-HTTPS client authentication incorrectly.

To resolve this issue, ensure that a valid certificate is installed on the DirectAccess client. In addition, ensure that the DirectAccess server or ADC is configured to use the correct CA when authenticating clients establishing IP-HTTPS connections.

Additional Information

DirectAccess IP-HTTPS Preauthentication 

DirectAccess IP-HTTPS Preauthentication using Citrix NetScaler

DirectAccess SSL Offload and IP-HTTPS preauthentication using Citrix NetScaler 

DirectAccess IP-HTTPS preauthentication using F5 BIG-IP 

Troubleshooting DirectAccess IP-HTTPS Error 0x2af9

When troubleshooting DirectAccess client connectivity issues, you may encounter a scenario where clients are unable to connect using the IP-HTTPS IPv6 transition technology. Running ipconfig shows that the tunnel adapter IPHTTPSInterface media state is Media disconnected.

DirectAccess IP-HTTPS Error 0x2af9

Running the Get-NetIpHttpsState PowerShell command shows that the LastErrorCode is 0x2af9 (WSAHOST_NOT_FOUND) and the InterfaceStatus is Failed to connect to the IPHTTPS server; waiting to reconnect.

DirectAccess IP-HTTPS Error 0x2af9

The 0x2af9 error differs slightly from the more common 0x274c IP-HTTPS connection time out error (WSAETIMEDOUT). In this scenario the DirectAccess client can successfully resolve the DirectAccess public hostname to an IPv4 address, and if ICMP echo requests are allowed on the DirectAccess server’s public IPv4 address it will respond to ping.

DirectAccess IP-HTTPS Error 0x2af9

The DirectAccess client is also able to establish a TCP connection to the DirectAccess server using the Test-NetConnection PowerShell command.

DirectAccess IP-HTTPS Error 0x2af9

So, why is the IP-HTTPS interface unable to establish a transition tunnel connection when the DirectAccess server’s public hostname resolves correctly via DNS and the client can establish a TCP connection on port 443? Commonly this is caused by proxy server settings configured in the web browser on the DirectAccess client computer. Disabling the proxy server in the client’s web browser should restore DirectAccess client connectivity over IP-HTTPS.

DirectAccess IP-HTTPS Error 0x2af9

If clearing the proxy server settings in the client machine’s web browser still does not restore IP-HTTPS connectivity, it may be that a proxy server is also configured for winhttp. You can confirm this by opening an elevated PowerShell command window and running the netsh winhttp show proxy command.

DirectAccess IP-HTTPS Error 0x2af9

To clear the winhttp proxy server settings run the netsh winhttp reset proxy command.

DirectAccess IP-HTTPS Error 0x2af9

Additional Resources

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

DirectAccess IP-HTTPS Preauthentication

DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

DirectAccess SSL Offload using F5 BIG-IP

DirectAccess IP-HTTPS Preauthentication with F5 BIG-IP

DirectAccess and Multi-SAN SSL Certificates for IP-HTTPS

Implementing DirectAccess with Windows Server 2016 Book

 

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

Introduction

DirectAccess is an IPv6 only solution, at least from the perspective of the client. When the DirectAccess client is remote, it communicates with the DirectAccess server using IPv6 exclusively. IPv6 transition technologies are used to enable this connectivity when the DirectAccess server and/or client are on the pubic IPv4 Internet.

IP-HTTPS

One of the IPv6 transition technologies used by DirectAccess is IP-HTTPS. With IP-HTTPS, IPv6 traffic is encapsulated in HTTP and delivered to the DirectAccess server using IPv4. IP-HTTPS is used exclusively when the DirectAccess server is located behind an edge firewall performing network address translation.

SSL Certificate

To support IP-HTTPS, an SSL certificate is installed on each DirectAccess server. The SSL certificate is commonly issued by a public certification authority, but it can also be issued by an internal PKI. The SSL certificate used for IP-HTTPS can and does expire, and when it does it will prevent any DirectAccess connection from being established using this transition technology.

Troubleshooting

When troubleshooting DirectAccess connectivity via IP-HTTPS, the first thing the administrator will notice is that the media state for the DirectAccess client’s IP-HTTPS tunnel adapter interface is shown as disconnected.

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

In addition, the Get-NetIPHttpsState PowerShell command returns an error code 0x800b0101 indicating Failed to connect to the IP-HTTPS server; waiting to reconnect.

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

Err.exe translates this error to CERT_E_EXPIRED, indicating that the SSL certificate is no longer valid.

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

Viewing the IP-HTTPS SSL certificate is not possible using a web browser. Instead, use Nmap and the ssl-cert script to view the certificate.

nmap.exe -n -Pn -p443 [FQDN] –script ssl-cert

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

In the Operations Status window of the Remote Access Management console on the DirectAccess server, the IP-HTTPS status is listed as Critical. Details show IP-HTTPS not working properly, with an error stating the IP-HTTPS certificate is not valid, and clearly indicating that the certificate is expired.

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

The IP-HTTPS status can also be viewed at the command line by issuing the following command in an elevated PowerShell command window.

Get-RemoteAccessHealth | Where-Object Component -eq IP-Https | Format-List

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

Updating the Certificate

Simply renewing the SSL certificate is not sufficient to restore IP-HTTPS connectivity for remote DirectAccess clients. The DirectAccess configuration must also be updated to use the new certificate. In the Remote Access Management console, highlight DirectAccess and VPN under Configuration and then click Edit on Step 2 (for load-balanced or multisite DirectAccess deployments, first highlight the individual server and then click Configure Server Settings). Click Network Adapters, click Browse, and then select the new SSL certificate.

DirectAccess Expired IP-HTTPS Certificate and Error 0x800b0101

Click Ok, Next, and then Finish twice and Apply. Repeat these steps for each server in the load-balanced cluster, and for all servers in all entry points in the enterprise.

Alternatively, the IP-HTTPS certificate can be updated in the DirectAccess configuration by opening an elevated PowerShell command window and entering the following commands.

$cert = Get-ChildItem -Path cert:\localmachine\my | Where-Object Thumbprint -eq [cert_thumbprint]
Set-RemoteAccess -SslCertificate $cert -Verbose

For example…

$cert = Get-ChildItem -Path cert:\localmachine\my | Where-Object Thumbprint -eq 2BFD1BC5805EBBF8ACB584DA025AD75B341A8B33
Set-RemoteAccess -SslCertificate $cert -Verbose


Important Note: Be sure to execute these commands on each DirectAccess server in the load-balanced cluster, and for all servers in all entry points in the enterprise.


Self-Signed Certificates

When DirectAccess is deployed using the Getting Started Wizard (GSW), also known as a “simplified deployment“, a self-signed certificate is used for IP-HTTPS. By default, this certificate expires 5 years after it is created. The expiration of a self-signed certificate presentsa unique challenge. Although the self-signed certificate can’t be renewed, it can be re-created or cloned using the New-SelfSignedCertificate PowerShell command. However, DirectAccess clients will not trust this new certificate until they receive the updated client settings via group policy. DirectAccess clients outside the network will not be able to establish IP-HTTPS connections until they receive these new policies. When they attempt to connect to the DirectAccess server without first updating group policy, the IP-HTTPS status will indicate an error code 0x800b0109 which translates to CERT_E_UNTRUSTEDROOT.

If the expired self-signed certificate is replaced with another self-signed certificate (not recommended), DirectAccess clients will have to come back to the internal network or connect remotely via client-based VPN to update group policy and receive the new DirectAccess client settings. A better alternative is to replace the expired self-signed certificate with a public SSL certificate that matches the existing public hostname. This will allow remote clients to reestablish DirectAccess connectivity without the need to udpate group policy first.

Summary

Certificate expiration must be monitored closely to ensure the highest level of availability for the DirectAccess remote access solution. Certificate auto enrollment can be leveraged to ensure that IPsec certificates are automatically renewed prior to expiration. However, the IP-HTTPS certificate must be renewed manually and requires additional configuration after it has been updated.

Additional Resources

DirectAccess Computer Certificate Auto Enrollment

DirectAccess and Multi-SAN SSL Certificates for IP-HTTPS

Implementing DirectAccess with Windows Server 2016 book

DirectAccess IP-HTTPS Preauthentication


Introduction

DirectAccess IP-HTTPS PreauthenticationRecently I’ve written about the security challenges with DirectAccess, specifically around the use of the IP-HTTPS IPv6 transition technology. In its default configuration, the DirectAccess server does not authenticate the client when an IP-HTTPS transition tunnel is established. This opens up the possibility of an unauthorized user launching Denial-of-Service (DoS) attacks and potentially performing network reconnaissance using ICMPv6. More details on this can be found here.

Mitigation

The best way to mitigate these security risks is to implement an Application Delivery Controller (ADC) such as the F5 BIG-IP Local Traffic Manager or the Citrix NetScaler. I’ve documented how to configure those platforms here and here.

No ADC?

For those organizations that do not have a capable ADC deployed, it is possible to configure the IP-HTTPS listener on the Windows Server 2012 R2 server itself to perform preauthentication.

Important Note: Making the following changes on the DirectAccess server is not formally supported. Also, this change is incompatible with one-time passwords (OTP)  and should not be performed if strong user authentication is enabled. In addition, null cipher suites will be disabled, resulting in reduced scalability and degraded performance for Windows 8.x and Windows 10 clients. Making this change should only be done if a suitable ADC is not available.

Configure IP-HTTPS Preauthentication

To configure the DirectAccess server to perform preauthentication for IP-HTTPS connections, open an elevated PowerShell command window and enter the following command.

ls Cert:\LocalMachine\My

DirectAccess IP-HTTPS Preauthentication

Copy the thumbprint that belongs to the SSL certificate assigned to the IP-HTTPS listener. Open an elevated command prompt window (not a PowerShell window!) and enter the following commands.

netsh http delete sslcert ipport=0.0.0.0:443
netsh http add sslcert ipport=0.0.0.0:443 certhash=[thumbprint]
appid={5d8e2743-ef20-4d38-8751-7e400f200e65}
dsmapperusage=enable clientcertnegotiation=enable

DirectAccess IP-HTTPS Preauthentication

For load-balanced clusters and multisite deployments, repeat these steps on each DirectAccess server in the cluster and/or enterprise.

Summary

Once these changes have been made, only DirectAccess clients that have a computer certificate with a subject name that matches the name of its computer account in Active Directory will be allowed to establish an IP-HTTPS transition tunnel connection.

DirectAccess and Windows 10 in Action

DirectAccess and Windows 10 in ActionRecently I recorded a short video to outline some of the benefits of using Windows 10 and DirectAccess. The video highlights common uses cases and includes a working demonstration of DirectAccess and Windows 10, both from the user’s and the administrator’s perspective.

The video shows how users transparently connect to the network and seamlessly access corporate resources over the DirectAccess connection. It also shows how administrators can leverage existing system management tools such as the Computer Management MMC, PowerShell remoting, and the Remote Desktop Protocol (RDP) to manage remote connected Windows 10 DirectAccess clients.

If you have any questions about implementing DirectAccess, integrating Windows 10 clients, or enabling outbound management, click here.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Introduction

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic ManagerTo provide geographic redundancy, DirectAccess can be deployed in a multisite configuration. In this scenario, Windows 8.x and Windows 10 clients are aware of all entry points in the enterprise and will automatically select the nearest available entry point to connect to. The nearest entry point is defined as the one that responds the quickest. When a Windows 8.x or Windows 10 client attempts to establish DirectAccess connectivity, an HTTP GET is sent to all entry points and the client will select the one with the shortest Round Trip Time (RTT) for the request.

Note: Windows 7 clients can be provisioned when DirectAccess is configured for multisite access, but they must be assigned to an individual entry point.

Challenges

There are a number of challenges that come with the default multisite configuration. Choosing an entry point based solely on network latency is rather simplistic and can often produce unexpected results. It also lacks support for granular traffic distribution or active/passive configuration.

GSLB

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic ManagerFor the best experience, DirectAccess can be configured to use a Global Server Load Balancing (GSLB) solution to enhance transparent site selection and failover for Windows 8.x and Windows 10 clients. Commonly this is implemented using an on-premises appliance (Citrix NetScaler, F5 Global Traffic Manager, Kemp LoadMaster, A10 Thunder, etc.). These solutions offer exceptional control over DirectAccess traffic distribution, but they add expense and complexity.

Azure Traffic Manager

Azure Traffic Manager is a cloud-based GSLB solution that is a simple and cost-effective alternative to dedicated on-premises appliances. While it does not offer all of the features that GSLB appliances provide, it does provide better traffic distribution options than the default configuration. Importantly, it enables active/passive failover, which is a common requirement not supported natively with DirectAccess.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Traffic Manager Configuration

In the Azure portal (the new one, not the old one!) click New, Networking, and then Traffic Manager profile.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Provide a name and select a Routing method.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Routing method options are Performance, Weighted and Priority.

  • Performance. Select this option to enable clients to connect to the entry point with the lowest network latency.
  • Weighted. Select this option to enable clients to prefer some entry points more than others. Assign a weight value of 1 to 1000 for each entry point. Higher values have more preference. Values for entry points can be the same, if desired.
  • Priority. Select this option to enable clients to connect to a primary entry point, then fail over to a secondary or tertiary entry point in the event of an outage. Assign a priority value of 1 to 1000 for each entry point. Lower values take precedence. Each entry point must be assigned a unique priority value.

Click Create when finished. Next click Settings for the new traffic manager profile and click Configuration. Change Protocol to HTTPS, Port to 443, and Path to /IPHTTPS. Click Save when finished.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Next click Endpoints and click Add. Select External endpoint from the drop down list, provide a descriptive name, and then enter the Fully-Qualified Domain Name (FQDN) of the first DirectAccess entry point. When using the Performance routing method, choose a location that best represents the geography where the DirectAccess entry point is located. When using the Weighted or Priority routing methods, specify an appropriate value accordingly. Click Ok when finished. Repeat these steps for each entry point in the organization.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

DirectAccess Configuration

In the Remote Access Management console, highlight DirectAccess and VPN below Configuration in the navigation tree and then click Configure Multisite Settings below Multisite Deployment in the Tasks pane. Click Global Load Balancing and choose Yes, use global load balancing. Enter the FQDN of the Azure Traffic Manager profile and click Next, and then click Commit.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Note: An SSL certificate with a subject name matching that of the GSLB FQDN is not required.

In some cases, the management console may report that global load balancing addresses cannot be identified automatically for some or all entry points.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

If this occurs, it will be necessary to run the Set-DAEntryPoint PowerShell cmdlet to assign GLSB IP addresses to each entry point. The GSLB IP address is the public IPv4 address that the entry point public hostname resolves to.

Set-DAEntryPoint -Name [entrypoint_name] -GslbIP [external_ip_address]

For example:

Set-DAEntryPoint -Name "US West" -GslbIP 203.0.113.195
Set-DAEntryPoint -Name "US East" -GslbIP 198.51.100.21

Summary

DirectAccess includes native functionality to enable geographic load balancing for Windows 8.x and Windows 10 clients. The site selection process used by DirectAccess clients in this scenario is basic, and has the potential to yield unexpected results. Azure Traffic Manager is a simple, cost-effective alternative to dedicated on-premises GSLB appliances. It can be integrated with DirectAccess to address some of the shortcomings with the native entry point selection process.

Additional Resources

DirectAccess Inbox Accounting Database Optimization

DirectAccess Inbox Accounting Database OptimizationRecently I wrote about an issue with DirectAccess servers exhibiting high SQL Server CPU usage. In that article I demonstrated a way to resolve the issue by adding a crucial index to a table in the remote access inbox accounting database. The process was a bit involved and required downloading third-party tools to make configuration changes on the DirectAccess server.

Going forward, making these changes will now be much easier. Microsoft has published guidance for optimizing the remote access inbox accounting database using PowerShell. They’ve also provided scripts to back up the database and to confirm that optimization has been implemented.

For more information and to download the remote access inbox accounting database optimization PowerShell scripts, click here.

%d bloggers like this: