Always On VPN IKEv2 Policy Mismatch Error

Always On VPN IKEv2 Policy Mismatch ErrorThe Internet Key Exchange version 2 (IKEv2) VPN protocol is the protocol of choice for Windows 10 Always On VPN deployments where the highest levels of security and assurance are required. However, as I’ve written about in the past, often the default IKEv2 security settings are less than desirable. Before using IKEv2 VPN in a production environment the administrator will need to update these security settings accordingly.

Connection Failure

When configuring Windows Server Routing and Remote Access Service (RRAS) or a third-party VPN appliance to support IKEv2 using custom security policies, the administrator may encounter a scenario in which a connection cannot be established due to a policy mismatch error. When the connection attempt fails, an error will be recorded in the Windows Application event log from the RasClient source with Event ID 20227. The error message states the following:

“The user [username] dialed a connection named [connection name] which has failed. The error code returned on failure is 13868.”

Always On VPN IKEv2 Policy Mismatch Error

Error Code 13868

Error code 13868 translates to ERROR_IPSEC_IKE_POLICY_MATCH. Essentially this error indicates that the IKEv2 security policy on the client did not match the configuration on the server.

Server Configuration

To view the current IKEv2 IPsec policy configuration, open an elevated PowerShell command window and run the following command.

Get-VpnServerIPsecConfiguration

Always On VPN IKEv2 Policy Mismatch Error

Client Configuration

To ensure interoperability, the VPN client must be configured to use the same IKEv2 security policy as defined on the sever. To view a VPN client’s currently configured IKEv2 security policy, open an elevated PowerShell command window and run the following command.

Get-VpnConnection -Name [connection name] | Select-Object -ExpandProperty IPsecCustomPolicy

Always On VPN IKEv2 Policy Mismatch Error

Note: If this PowerShell command returns no output, the VPN connection is not using a custom IKEv2 IPsec security policy.

Updating Settings

Guidance for configuring IKEv2 security policies on Windows Server RRAS and Windows 10 can be found here.

Summary

IKEv2 policy mismatch errors can be resolved easily by ensuring both the VPN server and client are configured to use the same IPsec security policies. Use the PowerShell commands in the above referenced above to validate settings and make changes when necessary.

Additional Information

Windows 10 Always On VPN IKEv2 Security Configuration

Windows 10 Always On VPN IKEv2 Features and Limitations

Show-VpnConnectionIPsecConfiguration PowerShell script on Github

Set-IKEv2SecurityBaseline PowerShell script on Github

Always On VPN with Azure Gateway

Always On VPN with Azure GatewayRecently I wrote about VPN server deployment options for Windows 10 Always On VPN in Azure. In that post I indicated the native Azure VPN gateway could be used to support Always On VPN connections using Internet Key Exchange version 2 (IKEv2) and Secure Socket Tunneling Protocol (SSTP). In this post I’ll outline the requirements and configuration steps for implementing this solution.

Requirements

To support Always On VPN, point-to-site VPN connections must be enabled on the Azure VPN gateway. Not all Azure VPN gateways are alike, and point-to-site connections are not supported in all scenarios. For Always On VPN, the Azure VPN gateway must meet the following requirements.

VPN SKU

The Azure VPN gateway SKU must be VpnGw1, VpnGw2, VpnGw3, VpnGw1AZ, VpnGw2AZ, or VpnGw3AZ. The Basic SKU is not supported.

VPN Type

The VPN type must be route-based. Policy-based VPN gateways are not supported for point-to-site VPN connections.

Limitations

Using the Azure VPN gateway for Always On VPN may not be ideal in all scenarios. The following limitations should be considered thoroughly before choosing the Azure VPN gateway for Always On VPN.

Device Tunnel

RADIUS/EAP authentication for user tunnel connections is not supported if the Azure VPN gateway is configured to support device tunnel with machine certificate authentication.

Maximum Connections

A maximum of 250, 500, and 1000 concurrent IKEv2 connections are supported when using the VpnGw1/AZ, VpnGw2/AZ, and VpnGw3/AZ SKUs, respectively (x2 for active/active gateway deployments). In addition, a maximum of 128 concurrent SSTP connections are supported for all VPN gateway SKUs (x2 for active/active gateway deployments).

Always On VPN with Azure Gateway

Reference: https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways#gwsku

RADIUS Requirements

To support Always On VPN connections, the Azure VPN gateway must be configured to authenticate to a RADIUS server. The RADIUS server must be reachable from the VPN gateway subnet. The RADIUS server can be hosted in Azure or on-premises. Before proceeding, ensure that any network routes, firewall rules, and site-to-site VPN tunnel configuration is in place to allow this communication.

RADIUS Configuration

Guidance for configuring Windows Server NPS for Always On VPN can be found here. The only difference when configuring NPS for use with Azure VPN gateway is the RADIUS client configuration.

Open the NPS management console (nps.msc) and follow the steps below to configure Windows Server NPS to support Always On VPN client connections from the Azure VPN gateway.

1. Expand RADIUS Clients and Servers.
2. Right-click RADIUS Clients and choose New.
3. Enter a descriptive name in the Friendly name field.
4. Enter the Azure VPN gateway subnet using CIDR notation in the Address (IP or DNS) field. The gateway subnet can be found by viewing the properties of the Azure VPN gateway in the Azure portal.
5. Enter the shared secret to be used for RADIUS communication in the Shared secret field.

Always On VPN with Azure Gateway

Azure VPN Gateway Configuration

To begin, provision a Virtual Network Gateway in Azure that meets the requirements outlined above. Guidance for implementing an Azure VPN gateway can be found here. Once complete, follow the steps below to enable support for Always On VPN client connections.

Enable Point-to-Site

Perform the following steps to enable point-to-site VPN connectivity.

1. In the navigation pane of the Azure VPN gateway settings click Point-to-site configuration.
2. Click Configure Now and specify an IPv4 address pool to be assigned to VPN clients. This IP address pool must be unique in the organization and must not overlap with any IP address ranges defined in the Azure virtual network.
3. From the Tunnel type drop-down list select IKEv2 and SSTP (SSL).
4. In the RADIUS authentication field enter the IPv4 address of the RADIUS server. At the time of this writing only a single IPv4 address is supported. If RADIUS redundancy is required, consider creating a load balanced NPS cluster.
5. In the Server secret field enter the RADIUS shared secret.
6. Click Save to save the configuration.

Always On VPN with Azure Gateway

VPN Client Configuration

Perform the following steps to configure a Windows 10 VPN client to connect to the Azure VPN gateway.

Download VPN Configuration

1. Click Point-to-site configuration.
2. Click Download VPN client.
3. Select EAPMSCHAv2 (yes, that’s correct even if EAP-TLS will be used!)
4. Click Download.
5. Open the downloaded zip file and extract the VpnSettings.XML file from the Generic folder.
6. Copy the FQDN in the VpnServer element in VpnSettings.XML. This is the FQDN that will be used in the template VPN connection and later in ProfileXML.

Always On VPN with Azure Gateway

Create a Test VPN Connection

On a Windows 10 device create a test VPN profile using the VPN server address copied previously. Configure EAP settings to match those configured on the NPS server and test connectivity.

Create an Always On VPN Connection

Once the VPN has been validated using the test profile created previously, the VPN server and EAP configuration from the test profile can be used to create the Always On VPN profile for publishing using Intune, SCCM, or PowerShell.

IKEv2 Security Configuration

The default IKEv2 security parameters used by the Azure VPN gateway are better than Windows Server, but the administrator will notice that a weak DH key (1024 bit) is used in phase 1 negotiation.

Always On VPN with Azure Gateway

Use the following PowerShell commands to update the default IKEv2 security parameters to recommended baseline defaults, including 2048-bit keys (DH group 14) and AES-128 for improved performance.

Connect-AzAccount
Select-AzSubscription -SubscriptionName [Azure Subscription Name]

$Gateway = [Gateway Name]
$ResourceGroup = [Resource Group Name]

$IPsecPolicy = New-AzVpnClientIpsecParameter -IpsecEncryption AES128 -IpsecIntegrity SHA256 -SALifeTime 28800 -SADataSize 102400000 -IkeEncryption AES128 -IkeIntegrity SHA256 -DhGroup DHGroup14 -PfsGroup PFS14

Set-AzVpnClientIpsecParameter -VirtualNetworkGatewayName $Gateway -ResourceGroupName $ResourceGroup -VpnClientIPsecParameter $IPsecPolicy

Note: Be sure to update the cryptography settings on the test VPN connection and in ProfileXML for Always On VPN connections to match the new VPN gateway settings. Failing to do so will result in an IPsec policy mismatch error.

Additional Information

Microsoft Azure VPN Gateway Overview

About Microsoft Azure Point-to-Site VPN

Windows 10 Always On VPN IKEv2 Security Configuration

 

 

 

Always On VPN DNS Registration Update Available

Always On VPN DNS Registration Update AvailableWhen configuring Always On VPN, administrators have the option to enable DNS registration for VPN clients. When this option is set, VPN clients will register the IP address assigned to their VPN interface in the internal DNS. This allows client devices to be managed using their hostname from the internal network whenever they are connected remotely.

DNS Registration

DNS registration is enabled in one of two ways, depending on how Always On VPN client devices are managed.

Intune

When using the native Microsoft Intune UI to manage Always On VPN profiles, DNS registration can be configured by selecting Enabled next to Register IP addresses with internal DNS in the Base VPN settings section.

Always On VPN DNS Registration Update Available

ProfileXML

When using custom ProfileXML with PowerShell, SCCM, or Intune, the administrator will define the RegisterDNS element to enable DNS registration.

Always On VPN DNS Registration Update Available

Known Issues

Some users have reported unexpected behavior when DNS registration is enabled. Specifically, under some circumstances the VPN client will register the IP address of the VPN network interface along with the IP address of its public network interface (Wi-Fi, Ethernet, etc.). However, the VPN client can only be managed using the VPN interface. If the VPN client’s hostname resolves to its public IP address, manage out will fail.

This appears to happen only when Name Resolution Policy Table (NRPT) rules are defined in Intune DNS settings, or if the DomainNameInformation element is defined in ProfileXML.

Always On VPN DNS Registration Update AvailableAlways On VPN DNS Registration Update Available

Resolution

Microsoft recently released fixes for this DNS registration issue for Windows 10. The fix for this issue is included in the following updates.

Windows 10 1803 – KB4507466
Windows 10 1809 – KB4505658
Windows 10 1903 – KB4505903

Additional Configuration

After installing the update, the following registry entry must be defined on each VPN client.

HKLM\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters\DisableNRPTForAdapterRegistration DWORD = 1

To enable this setting, open an elevated PowerShell window and run the following command.

New-ItemProperty -Path ‘HKLM:SYSTEM\CurrentControlSet\Services\Dnscache\Parameters\’ -Name DisableNRPTForAdapterRegistration -PropertyType DWORD -Value 1 -Force

Once complete, restart the client device for the changes to take effect. After validation testing is complete, the registry entry can be deployed to Always On VPN clients using Active Directory group policy preferences or Intune.

Additional Information

Deploying Windows 10 Always On VPN with Intune using Custom ProfileXML

Windows 10 Always On VPN Updates to Improve Connection Reliability

Windows 10 Always On VPN Device Tunnel Configuration using Microsoft Intune

Windows 10 Always On VPN Hands-On Training Classes

Error Importing Windows Server RRAS Configuration

Error Importing Windows Server RRAS Configuration Windows Server and the Routing and Remote Access Service (RRAS) is a popular choice for Windows 10 Always On VPN deployments. It is easy to implement and support, offers flexible scalability, and is cost-effective. In addition, it provides support for a TLS-based VPN protocol which is required for many deployments.

Configuration Backup

When deploying RRAS to support Always On VPN, it’s an excellent idea to export the configuration once all settings have been finalized. Often this is done by opening an elevated command window and running netsh.exe ras dump and piping the output to a text file, as shown here.

netsh.exe ras dump > rasconfig.txt

Import Error

Importing a saved configuration is accomplished by opening an elevated command window and running netsh.exe exec [filename], as shown here.

netsh.exe exec rasconfig.txt

Oddly, this doesn’t work by default. The import will fail and return the following error message.

“The following command was not found: ■.”

Error Importing Windows Server RRAS Configuration

Root Cause

Importing the RRAS configuration fails because the default configuration output is saved in Unicode format. Inexplicably this encoding is not recognized by netsh.exe when importing the configuration.

Workaround

Follow the steps below to save the configuration file in a format that can be imported using netsh.exe.

1. Open the exported configuration file using notepad.exe.
2. From the Menu bar choose File > Save As.
3. From the Encoding drop-down list choose ANSI.
4. Click Save.

Error Importing Windows Server RRAS Configuration

Once complete, import the file using netsh.exe exec [filename]. Restart the RemoteAccess service to apply the changes.

PowerShell

Administrators can use PowerShell to export the RRAS configuration and ensure the correct encoding format is used by default. To do this, open an elevated PowerShell window and run the following command.

Invoke-Command -ScriptBlock {netsh ras dump} | Out-File [filename] -Encoding ASCII

Additional Information

Windows 10 Always On VPN and Windows Server Routing and Remote Access Service (RRAS)

Windows 10 Always On VPN Protocol Recommendations for Windows Server Routing and Remote Access Service (RRAS)

Always On VPN RasMan Errors in Windows 10 1903

Always On VPN RasMan Errors in Windows 10 1903After deploying or upgrading to Windows 10 1903, administrators may find that Windows 10 Always On VPN connections fail to establish successfully. Always On VPN connections continue to work for Windows 10 1809 and earlier clients, however.

Important Note: The issue described in this article has been addressed in KB4505903 (build 18362.267) released July 26, 2019.

RasMan Event Log Errors

When this occurs, the application event log contains an error with Event ID 1000 that includes the following information.

“Faulting application name: svchost.exe_RasMan…”, “Faulting module name: rasmans.dll”, and “Exception code: 0xc0000005”

Always On VPN RasMan Errors in Windows 10 1903 Administrators may find that Windows 10 Always On VPN connections fail after deploying or upgrading to Windows 10 1903. Always On VPN connections continue to work for Windows 10 1809 and earlier clients. RasMan Event Log Errors When this occurs, the application event log contains an error with Event ID 1000 that includes the following information. “Faulting application name: svchost.exe_RasMan…”, “Faulting module name: rasmans.dll”, and “Exception code: 0xc0000005” Root Cause RasMan failures can occur in Windows 10 1903 clients when telemetry is disabled via group policy or the registry. Microsoft has identified the issue and is currently working on a fix. Workaround As a temporary workaround to restore Always On VPN connectivity, enable telemetry on Windows 10 1903 using Active Directory or local group policy, the local registry, or PowerShell. Group Policy Create a new GPO or edit an existing one by opening the group policy management console (gpmc.msc) and performing the following steps. 1. Expand Computer Configuration > Administrative Templates > Windows Components > Data Collection and Preview Builds 2. Double-Click Allow Telemetry. 3. Select Enabled. 4. Choose 1-Basic, 2-Enhanced, or 3-Full (do not select 0-Security). 5. Click Ok. Registry Telemetry can also be enabled locally by opening the registry editor (regedit.exe) and modifying the following registry setting. HKLM\SOFTWARE\Policies\Microsoft\Windows\DataCollection\AllowTelemetry DWORD = 1 Note: The AllowTelemetry value can be removed entirely, if desired. PowerShell PowerShell can also be used modify or remove the AllowTelemetry value on Windows 10 1903 clients. Run the following PowerShell command to update the AllowTelemetry setting. New-ItemProperty -Path 'HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\' -Name AllowTelemetry -PropertyType DWORD -Value 1 -Force Optionally, run the following PowerShell command to remove the AllowTelemetry setting entirely. Remove-ItemProperty -Path 'HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\' -Name AllowTelemetry Restart Required Once these changes have been made, restart the client and test the Always On VPN connection. Additional Information asdf

Root Cause

RasMan failures can occur in Windows 10 1903 clients when telemetry is disabled via group policy or the registry. Microsoft has identified the issue and is currently working on a fix.

Workaround

As a temporary workaround to restore Always On VPN connectivity, enable telemetry on Windows 10 1903 using Active Directory or local group policy, the local registry, or PowerShell.

Group Policy

Create a new GPO or edit an existing one by opening the group policy management console (gpmc.msc) and performing the following steps.

1. Expand Computer Configuration > Administrative Templates > Windows Components > Data Collection and Preview Builds
2. Double-click Allow Telemetry.
3. Select Enabled.
4. Choose 1-Basic, 2-Enhanced, or 3-Full (do not select 0-Security).
5. Click Ok.

Always On VPN RasMan Errors in Windows 10 1903 Administrators may find that Windows 10 Always On VPN connections fail after deploying or upgrading to Windows 10 1903. Always On VPN connections continue to work for Windows 10 1809 and earlier clients. RasMan Event Log Errors When this occurs, the application event log contains an error with Event ID 1000 that includes the following information. “Faulting application name: svchost.exe_RasMan…”, “Faulting module name: rasmans.dll”, and “Exception code: 0xc0000005” Root Cause RasMan failures can occur in Windows 10 1903 clients when telemetry is disabled via group policy or the registry. Microsoft has identified the issue and is currently working on a fix. Workaround As a temporary workaround to restore Always On VPN connectivity, enable telemetry on Windows 10 1903 using Active Directory or local group policy, the local registry, or PowerShell. Group Policy Create a new GPO or edit an existing one by opening the group policy management console (gpmc.msc) and performing the following steps. 1. Expand Computer Configuration > Administrative Templates > Windows Components > Data Collection and Preview Builds 2. Double-Click Allow Telemetry. 3. Select Enabled. 4. Choose 1-Basic, 2-Enhanced, or 3-Full (do not select 0-Security). 5. Click Ok. Registry Telemetry can also be enabled locally by opening the registry editor (regedit.exe) and modifying the following registry setting. HKLM\SOFTWARE\Policies\Microsoft\Windows\DataCollection\AllowTelemetry DWORD = 1 Note: The AllowTelemetry value can be removed entirely, if desired. PowerShell PowerShell can also be used modify or remove the AllowTelemetry value on Windows 10 1903 clients. Run the following PowerShell command to update the AllowTelemetry setting. New-ItemProperty -Path 'HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\' -Name AllowTelemetry -PropertyType DWORD -Value 1 -Force Optionally, run the following PowerShell command to remove the AllowTelemetry setting entirely. Remove-ItemProperty -Path 'HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\' -Name AllowTelemetry Restart Required Once these changes have been made, restart the client and test the Always On VPN connection. Additional Information asdf

Registry

Telemetry can also be enabled locally by opening the registry editor (regedit.exe) and modifying the following registry setting.

HKLM\SOFTWARE\Policies\Microsoft\Windows\DataCollection\AllowTelemetry DWORD = 1

Always On VPN RasMan Errors in Windows 10 1903 Administrators may find that Windows 10 Always On VPN connections fail after deploying or upgrading to Windows 10 1903. Always On VPN connections continue to work for Windows 10 1809 and earlier clients. RasMan Event Log Errors When this occurs, the application event log contains an error with Event ID 1000 that includes the following information. “Faulting application name: svchost.exe_RasMan…”, “Faulting module name: rasmans.dll”, and “Exception code: 0xc0000005” Root Cause RasMan failures can occur in Windows 10 1903 clients when telemetry is disabled via group policy or the registry. Microsoft has identified the issue and is currently working on a fix. Workaround As a temporary workaround to restore Always On VPN connectivity, enable telemetry on Windows 10 1903 using Active Directory or local group policy, the local registry, or PowerShell. Group Policy Create a new GPO or edit an existing one by opening the group policy management console (gpmc.msc) and performing the following steps. 1. Expand Computer Configuration > Administrative Templates > Windows Components > Data Collection and Preview Builds 2. Double-Click Allow Telemetry. 3. Select Enabled. 4. Choose 1-Basic, 2-Enhanced, or 3-Full (do not select 0-Security). 5. Click Ok. Registry Telemetry can also be enabled locally by opening the registry editor (regedit.exe) and modifying the following registry setting. HKLM\SOFTWARE\Policies\Microsoft\Windows\DataCollection\AllowTelemetry DWORD = 1 Note: The AllowTelemetry value can be removed entirely, if desired. PowerShell PowerShell can also be used modify or remove the AllowTelemetry value on Windows 10 1903 clients. Run the following PowerShell command to update the AllowTelemetry setting. New-ItemProperty -Path 'HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\' -Name AllowTelemetry -PropertyType DWORD -Value 1 -Force Optionally, run the following PowerShell command to remove the AllowTelemetry setting entirely. Remove-ItemProperty -Path 'HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\' -Name AllowTelemetry Restart Required Once these changes have been made, restart the client and test the Always On VPN connection. Additional Information asdf

Note: The AllowTelemetry value can be removed entirely, if desired.

PowerShell

PowerShell can also be used modify or remove the AllowTelemetry value on Windows 10 1903 clients. Run the following PowerShell command to update the AllowTelemetry setting.

New-ItemProperty -Path ‘HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\’ -Name AllowTelemetry -PropertyType DWORD -Value 1 -Force

Optionally, run the following PowerShell command to remove the AllowTelemetry setting entirely.

Remove-ItemProperty -Path ‘HKLM:\SOFTWARE\Policies\Microsoft\Windows\DataCollection\’ -Name AllowTelemetry

Service Restart Required

Once these changes have been made, restart the Remote Access Connection Manager service (RasMan) using the Services mnagement console (services.msc) or by running the following PowerShell command.

Restart-Service RasMan -PassThru

Optionally, the client can be rebooted to apply these changes.

Additional Information

Windows 10 1903 Known Issues

 

Always On VPN Device Tunnel and Certificate Revocation

Always On VPN Device Tunnel and Certificate RevocationRecently I wrote about denying access to Windows 10 Always On VPN users or computers. In that post I provided specific guidance for denying access to computers configured with the device tunnel. To summarize, the process involved exporting the device certificate from the issuing Certification Authority (CA) server and placing it in the Untrusted Certificates certificate store on each VPN server. In theory, simply revoking the device certificate should be all that’s required to prevent device tunnel connections.

Revocation Check Failure

As it turns out, a bug in Windows Server Routing and Remote Access prevents this from working as expected. Windows Server 2012 R2, 2016, and 2019 all fail to check the Certificate Revocation List (CRL) for IKEv2 VPN connections using machine certificate authentication (for example an Always On VPN device tunnel).

Update for Windows Server

Microsoft recently made a fix for this issue available for Windows Server 2016. It is included in the June 18, 2019 update KB4503294 (build 14393.3053). A fix for Windows Server 2019 is forthcoming. Windows Server 2012 R2 will not be updated. It is recommended that you upgrade to a later version of the Windows Server operating system to  address this issue.

Note: This fix is now available for Windows Server 1903 (semi-annual channel). It is included in the June 27, 2019 update KB4501375 (build 18362.207).

Enable Revocation Check

Additional configuration is required to enable support for CRL checking. Microsoft published guidance for configuring CRL revocation checks for IKEv2 VPN connections using machine certificate authentication here. Specifically, administrators must enable the RootCertificateNameToAccept parameter and set a registry key to enable this functionality.

Open an elevated PowerShell window and run the following commands to enable CRL checking for IKEv2 VPN connections using machine certificate authentication.

$Thumbprint = ‘Root CA Certificate Thumbprint’
$RootCACert = (Get-ChildItem -Path cert:\LocalMachine\root | Where-Object {$_.Thumbprint -eq $Thumbprint})
Set-VpnAuthProtocol -RootCertificateNameToAccept $RootCACert -PassThru

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Services\RemoteAccess\Parameters\Ikev2\’ -Name CertAuthFlags -PropertyTYpe DWORD -Value ‘4’ -Force

Restart-Service RemoteAccess -PassThru

Always On VPN Device Tunnel and Certificate Revocation

A PowerShell script to update the RootCertificateNameToAccept parameter on multiple VPN servers can be found here.

Revoking Certificates

To prevent a Windows 10 Always On VPN device tunnel connection, the administrator must first revoke the certificate on the issuing CA. Next, open an elevated command window an enter the following commands. Repeat these steps on each VPN server in the enterprise.

certutil -urlcache * delete
certutil -setreg chain\ChainCacheResyncFiletime @now

Additional Information

Denying Access to Windows 10 Always On VPN Users or Computers

Blocking VPN Clients that use Revoked Certificates

PowerShell Script to Configure RootCertificateNameToAccept on GitHub

 

 

Always On VPN SSTP Load Balancing with F5 BIG-IP

Always On VPN SSTP Load Balancing with F5 BIG-IP The Windows Server Routing and Remote Access Service (RRAS) includes support for the Secure Sockets Tunneling Protocol (SSTP), which is a Microsoft proprietary VPN protocol that uses SSL/TLS for security and privacy of VPN connections. The advantage of using SSTP for Always On VPN is that it is firewall friendly and ensures consistent remote connectivity even behind highly restrictive firewalls.

Load Balancing SSTP

In a recent post, I described some of the use cases and benefits of SSTP load balancing as well as the offloading of TLS for SSTP VPN connections. Using a load balancer for SSTP VPN connections increases scalability, and offloading TLS for SSTP reduces resource utilization and improves performance for VPN connections. There are positive security benefits too.

Configuration

Enabling load balancing for SSTP on the F5 BIG-IP platform is fundamentally similar to load balancing HTTPS web servers. However, there are a few subtle but important differences.

Default Monitor

The default HTTP and HTTPS monitors on the F5 will not accurately reflect the health of the SSTP service running on the RRAS server. In addition, using a simple TCP port monitor could yield unexpected results. To ensure accurate service status monitoring, a new custom monitor must be created to validate the health of the SSTP service.

Custom SSTP Monitor

Open the F5 BIG-IP management console and follow the steps below to create and assign a new custom monitor for SSTP.

Create Monitor

1. In the navigation tree highlight Local Traffic.
2. Click Monitors.
3. Click Create.

Always On VPN SSTP Load Balancing with F5 BIG-IP

4. Enter a descriptive name in the Name field and from the Type drop-down list choose HTTP if TLS offload is enabled, or HTTPS if it is not.
5. In the Send String field enter HEAD /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/ HTTP/1.1\r\nHost:r\nConnection: Close\r\n\r\n.
6. In the Receive String field enter HTTP/1.1 401.
7. Click Finished.

Always On VPN SSTP Load Balancing with F5 BIG-IP

Assign Monitor

1. Below Local Traffic click Pools.
2. Click on the SSTP VPN server pool.
3. In the Health Monitors section select the SSTP VPN health monitor from the Available list and make it Active.
4. Click Update.

Always On VPN SSTP Load Balancing with F5 BIG-IP

CLI Configuration

If you prefer to configure the SSTP VPN monitor using the F5’s Command Line Interface (CLI), you can download the monitor configuration from my GitHub here.

TLS Offload

It is generally recommended that TLS offload not be enabled for SSTP VPN. However, if TLS offload is desired, it is configured in much the same way as a common HTTPS web server. Specific guidance for enabling TLS offload on the F5 BIG-IP can be found here. Details for configuring RRAS and SSTP to support TLS offload can be found here.

Certificates

When enabling TLS offload for SSTP VPN connections it is recommended that the public SSL certificate be installed on the RRAS server, even though TLS processing will be handled on the F5 and HTTP will be used between the F5 and the RRAS server. If installing the public SSL certificate on the RRAS server is not an option, additional configuration will be required. Specifically, TLS offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be found here.

Once the script has been downloaded, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

Example:

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Re-Encryption

When offloading TLS for SSTP VPN connections, all traffic between the F5 and the RRAS server will be sent in the clear using HTTP. In some instances, TLS offload is required only for traffic inspection, not performance gain. In this scenario the F5 will be configured to terminate and then re-encrypt connections to the RRAS server. When terminating TLS on the F5 and re-encrypting connections to the RRAS server is required, the same certificate must be used on both the F5 and the RRAS server. Using different certificates on the RRAS server and the load balancer is not supported.

Additional Information

Windows 10 Always On VPN SSTP Load Balancing and SSL Offload

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN ECDSA SSL Certificate Request for SSTP

Windows 10 Always On VPN SSTP Connects then Disconnects

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

 

Renew DirectAccess Self-Signed Certificates

Renew DirectAccess Self-Signed CertificatesImportant! Updated July 15, 2019 to support all versions of Windows Server including Windows Server 2012 and 2012 R2. Also added functionality to renew self-signed certificates individually.

When DirectAccess is deployed using the Getting Started Wizard (GSW), sometimes referred to as the “simplified deployment” method, self-signed certificates are created during the installation and used for the IP-HTTPS IPv6 transition technology, the Network Location Server (NLS), and for RADIUS secret encryption. Administrators may also selectively choose to use self-signed certificates for IP-HTTPS, or when collocating the NLS on the DirectAccess server. The RADIUS encryption certificate is always self-signed.

Renew DirectAccess Self-Signed Certificates

Certificate Expiration

These self-signed certificates expire 5 years after they are created, which means many DirectAccess administrators who have used this deployment option will need to renew these certificates at some point in the future. Unfortunately, there’s no published guidance from Microsoft on how to accomplish this. However, the process is simple enough using PowerShell and the New-SelfSignedCertificate cmdlet.

PowerShell Script on GitHub

The PowerShell script to renew DirectAccess self-signed certificates has been published on GitHub. You can download Renew-DaSelfSignedCertificates.ps1 here.

Important Considerations

When the IP-HTTPS and NLS scripts above are executed, DirectAccess clients outside will be immediately disconnected and will be unable to reconnect until they update group policy (the RADIUS encryption certificate can be updated without impacting users). This will require connecting to the internal network locally or remotely using another VPN solution. In addition, internal clients that are not online when this change is made will be unable to access internal resources by name until they update group policy. If this happens, delete the Name Resolution Policy Table (NRPT) on the client using the following PowerShell command and reboot to restore connectivity.

Get-Item -Path “HKLM:\SOFTWARE\Policies\Microsoft\Windows NT\DNSClient\DnsPolicyConfig” | Remove-Item -Confirm:$false

Additional Information

PowerShell Recommended Reading for DirectAccess Administrators

Top 5 DirectAccess Troubleshooting PowerShell Commands

 

 

Always On VPN and Azure MFA ESTS Token Error

Always On VPN and Azure MFA ESTS Token ErrorConfiguring Multifactor Authentication (MFA) is an excellent way to ensure the highest level of assurance for Always On VPN users. Azure MFA is widely deployed and commonly integrated with Windows Server Network Policy Server (NPS) using the NPS Extension for Azure MFA. Azure MFA has a unique advantage over many other MFA providers in that it supports MFA when using Protected Extensible Authentication Protocol (PEAP). This makes Azure MFA the solution of choice for integrating with Windows 10 Always On VPN deployments using client certificate authentication, a recommended security configuration best practice.

NPS Configuration

Installing and configuring the NPS extension for Azure MFA is straightforward. Configuration guidance from Microsoft can be found here.

Connection Issues

After installing the NPS extension for Azure MFA, administrators may find that Always On VPN connections fail and the user is never challenged for authentication. The connection eventually times out and returns the following error message.

“A connection to the remote computer could not be established, so the port used for this connection was closed.”

Always On VPN and Azure MFA ESTS Token Error

In addition, the Application event log on the Windows 10 client contains an Event ID 20221 from the RasClient source that includes the following error message.

“The user [username] dialed a connection named [connection] which has failed. The error code returned on failure is 0.”

Always On VPN and Azure MFA ESTS Token Error

NPS Event Log

Reviewing the event logs on the NPS server reveals more information. The Security event log contains an Event ID 6274 from the Microsoft Windows security auditing source that includes the following error message.

“Network Policy Server discarded the request for a user. Contact the Network Policy Administrator for more information.”

Always On VPN and Azure MFA ESTS Token Error

ESTS Token Error

Digging deeper in the operational event log on the NPS server, the AuthZAdminCh log (Applications and Services Logs > Microsoft > AzureMfa > AuthZ) contains an Event ID 3 from the AuthZ source indicating an ESTS_TOKEN_ERROR message.

Always On VPN and Azure MFA ESTS Token Error

Troubleshooting ESTS Token Error

Follow the steps below to troubleshoot the ESTS_TOKEN_ERROR.

Prerequisites

Ensure that all prerequisites are met. Validate the user is being synced to Azure Active Directory and that it is properly licensed for Azure MFA.

Certificates

As part of the NPS extension configuration, a certificate is created on the NPS server that is uploaded to Azure Active Directory. To validate the certificate was created and uploaded correctly, follow the troubleshooting guidance found here.

Enterprise Applications

The Azure Multi-Factor Auth Client and the Azure Multi-Factor Auth Connector enterprise applications must be enabled to support the NPS extension for Azure MFA. To confirm they are enabled, open an elevated PowerShell command window on the server where the Azure AD Connector is installed and run the following PowerShell commands.

Import-Module MSOnline
Connect-MsolService

Get-MsolServicePrincipal -AppPrincipalId “981f26a1-7f43-403b-a875-f8b09b8cd720” | Select-Object DisplayName, AccountEnabled

Get-MsolServicePrincipal -AppPrincipalId “1f5530b3-261a-47a9-b357-ded261e17918” | Select-Object DisplayName, AccountEnabled

Always On VPN and Azure MFA ESTS Token Error

If either or both enterprise applications are not enabled, enable them using the following PowerShell commands.

Set-MsolServicePrincipal -AppPrincipalId “981f26a1-7f43-403b-a875-f8b09b8cd720” -AccountEnabled $True

Set-MsolServicePrincipal -AppPrincipalId “1f5530b3-261a-47a9-b357-ded261e17918” -AccountEnabled $True

Once complete, restart the IAS service on the NPS server using the following PowerShell command.

Restart-Service IAS -PassThru

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing Strategies

Deploy Windows 10 Always On VPN with Microsoft Intune

Windows 10 Always On VPN Hands-On Training Classes Now Available

Always On VPN LockDown Mode

Always On VPN LockDown ModeWhen an Always On VPN connection is provisioned to a Windows 10 client, there’s nothing to prevent a user from disconnecting or even deleting the connection. Some administrators have expressed concern about this, fearful that users may disable the VPN to improve performance or circumvent access controls when force tunneling is enabled. Also, administrators may wish to prevent users from accidentally or purposefully making changes to the configuration, or even deleting the connection entirely.

LockDown Mode

To address these concerns, Microsoft included a feature called LockDown mode for Always On VPN. Once enabled, the following conditions apply.

  • The LockDown VPN connection is always on.
  • The LockDown VPN connection cannot be disabled.
  • The user can’t make changes to or delete the LockDown connection.
  • No other VPN connections can exist on the client.
  • Force tunneling is enabled by default (split tunneling in LockDown mode is not supported).

Challenges with LockDown Mode

Always On VPN LockDown mode brings with it some unique challenges, however. Consider the following.

Limited Protocol Support

LockDown mode only supports IKEv2 and the native (built-in) VPN client. Third-party plug-in provider clients are not supported. IKEv2 is an excellent VPN protocol in terms of security, but operationally speaking it has some serious drawbacks.

Force Tunneling Only

LockDown mode uses force tunneling exclusively. All network traffic must go over the VPN connection. However, if the VPN connection is not available, the client will be unable to access any network resources at all, local or remote.

Captive Portal Issues

LockDown mode prevents clients from connecting to network resources from a network with a captive portal.

On-premises Connectivity

In LockDown mode all network traffic must flow over the VPN tunnel even if the client is on the internal network. This also means that if the VPN server is not reachable internally (unable to resolve public hostname, protocols/ports blocked by internal firewall, unable to route to VPN server, etc.) the client will not be able to access any internal or external network resources at all.

Deleting a LockDown VPN Connection

Deleting a LockDown VPN connection is also challenging. Administrators will find that trying to delete it using the UI or PowerShell often fails. To delete a LockDown Always On VPN connection, use psexec.exe to open an elevated PowerShell command window running in the system context using the following command.

.\psexec.exe -i -s C:\windows\system32\WindowsPowerShell\v1.0\powershell.exe

In the new elevated PowerShell window run the following commands to delete the LockDown VPN connection.

$Namespace = “root\cimv2\mdm\dmmap”
$ClassName = “MDM_VPNv2_01”

$obj = Get-CimInstance -Namespace $Namespace -ClassName $ClassName
Remove-CimInstance -CimInstance $obj

Optionally, download and run Remove-LockDownVPN.ps1 here.

Summary

While Always On VPN LockDown mode might seem like a good idea initially, its implementation is heavy-handed and practically speaking ends up causing more problems than it solves. For administrators that plan to enable this feature, carefully consider the drawbacks and limitations outlined above and their impact on supportability and the user experience.

Additional Information

Windows Always On VPN Device Tunnel Config using Microsoft Intune

Windows 10 Always On VPN Security Configuration 

Windows 10 Always On VPN Hands-On Training

 

%d bloggers like this: