Cloudflare Public DNS Resolver Now Available

Cloudflare Public DNS Resolver Now AvailableCloudflare has become a nearly ubiquitous cloud service provider in recent years, fronting many of the busiest web sites on the Internet. They provide tremendous value both in terms of security and performance for their customers. They have a wide array of solutions designed to provide better security, including optimized SSL/TLS configuration and Web Application Firewall (WAF) capabilities. Their DDoS mitigation service is second to none, and their robust Content Delivery Network (CDN) ensures optimal loading of content for web sites anywhere in the world.

Public DNS Resolver

Recently Cloudflare announced their first consumer service, a public DNS resolver that is free for general use. It offers exceptional performance and supports many of the latest DNS security and privacy enhancements such as DNS-over-TLS. Cloudflare has also pledged not to write DNS queries to disk at all and not to store them for more than 24 hours to further ensure privacy for their customers.

Cloudflare Public DNS Resolver Now Available

DNS Security Controls

What Cloudflare DNS is lacking today is granular security enforcement to provide additional protection for client computers outside the firewall. For example, public DNS resolvers from OpenDNS and Quad9 have built-in security features that use threat intelligence to identify and block DNS name resolution requests for domains that are known to be malicious or unsafe. OpenDNS has the added benefit of providing more granularity for setting policy, allowing administrators to select different filtering levels and optionally to create custom policies to allow or block individually selected categories. With OpenDNS, security administrators can also manage domains individually by manually assigning allow or block to specific, individual domains as necessary.

Recommended Use Cases

Cloudflare DNS clearly offers the best performance of all public DNS resolvers today, which makes it a good candidate for servers that rely heavily on DNS for operation. Mail servers come to mind immediately, but any system that performs many forward and/or reverse DNS lookups would benefit from using Cloudflare DNS. Cloudflare DNS can also be used by client machines where better performance and enhanced privacy are desired.

Quad9 DNS is a good choice for client computers where additional security is required. OpenDNS is the best choice where the highest level of security is required, and where granular control of security and web filtering policies is necessary.

Additional Information

Cloudflare DNS
Quad9 DNS
OpenDNS
Dnsperf.com

DirectAccess NRPT Configuration with Split DNS

DirectAccess NRPT Configuration with Split DNSThe Name Resolution Policy Table (NRPT) in Windows provides policy-based name resolution request routing for DNS queries. DirectAccess uses the NRPT to ensure that only requests for resources in the internal namespace, as defined by the DirectAccess administrator, are sent over the DirectAccess connection. DNS queries for all other namespaces are sent to the DNS servers defined on the client’s network interface.

Note: This behavior changes when force tunneling is enabled. In this case, all DNS queries are sent over the DirectAccess connection with the exception of the NLS and the DirectAccess server’s public hostname(s). If force tunneling is enabled, the configuration guidance described below is not required.

Split DNS

NRPT configuration is straightforward when the internal and external namespaces are unique. However, when split DNS is used, meaning when the internal and external namespaces are the same, DirectAccess configuration is more challenging. Typically, there may be many resources that should not go over the DirectAccess connection, such as public-facing web servers, email and unified communications servers, federation servers, etc. Without additional configuration, requests for all of these services would go over the DirectAccess connection. That may or may not be desirable, depending on the requirements of the implementation.

DirectAccess Server

One crucial public resource is the DirectAccess server itself. When using split DNS, the DirectAccess implementation’s public hostname will, by default, be included in the internal namespace. In this scenario, the DirectAccess client will fail to establish a connection to the DirectAccess server.

Troubleshooting

When troubleshooting failed connectivity, the output of ipconfig will show the IP-HTTPS tunnel interface media state as “Media disconnected”.

DirectAccess NRPT Configuration with Split DNS

The output of Get-NetIPHttpsState will also return an error code 0x2AF9 with an interface status “Failed to connect to the IPHTTPS server; waiting to reconnect”.

DirectAccess NRPT Configuration with Split DNS

To further troubleshoot this issue, examine the output of Get-NetIPHttpsConfiguration. Test name resolution of the FQDN listed in the ServerURL field. If the issue is related to NRPT configuration, the client will fail to resolve this name to an IP address. Testing from a non-DirectAccess client should resolve correctly, however.

DirectAccess NRPT Configuration with Split DNS

NRPT Configuration

If split DNS is employed, it is necessary to include the DirectAccess server’s public hostname in the NRPT as an exemption. This will cause the DNS query for the public hostname to use public DNS servers, allowing the DirectAccess client to establish a connection successfully.

To resolve this issue, open the Remote Access Management console on the DirectAccess server, highlight DirectAccess and VPN under Configuration, and then click Edit on Step 3. Select DNS, and then double-click on an empty row in the table.

DirectAccess NRPT Configuration with Split DNS

Enter the public hostname for the DirectAccess deployment in the DNS suffix field (the public hostname can be found by clicking Edit on Step 2). Do NOT specify a DNS server. Click Apply, click Next twice, and then click Finish.

DirectAccess NRPT Configuration with Split DNS

Note: For multisite deployments, be sure to include the public hostname for each entry point in the enterprise. Also, if multisite is configured to use GSLB, include the GSLB hostname as well.

PowerShell

Alternatively, you can run the following PowerShell commands to automatically configure the NRPT for split DNS. For multisite deployments, be sure to run these commands on at least one DirectAccess server in each site.

$hostname = Get-RemoteAccess | Select-Object -ExpandProperty ConnectToAddress
Add-DAClientDnsConfiguration -DnsSuffix $hostname -PassThru

If multisite is configured to use GSLB, run the following PowerShell commands on one DirectAccess server in the enterprise.

$gslbfqdn = Get-DAMultiSite | Select-Object -ExpandProperty GslbFqdn
Add-DAClientDnsConfiguration -DnsSuffix $gslbfqdn -PassThru

Additional Information

Troubleshooting DirectAccess IP-HTTPS Error 0x2af9

DirectAccess DNS Not Working Properly

DirectAccess DNS Records Explained

Troubleshooting Name Resolution Issue on DirectAccess Clients

DirectAccess Manage Out with ISATAP and NLB Clustering

DirectAccess Manage Out with ISATAP and NLB ClusteringDirectAccess connections are bidirectional, allowing administrators to remotely connect to clients and manage them when they are out of the office. DirectAccess clients use IPv6 exclusively, so any communication initiated from the internal network to remote DirectAccess clients must also use IPv6. If IPv6 is not deployed natively on the internal network, the Intrasite Automatic Tunnel Addressing Protocol (ISATAP) IPv6 transition technology can be used to enable manage out.

ISATAP Supportability

According to Microsoft’s support guidelines for DirectAccess, using ISATAP for manage out is only supported for single server deployments. ISATAP is not supported when deployed in a multisite or load-balanced environment.

Not supported” is not the same as “doesn’t work” though. For example, ISATAP can easily be deployed in single site DirectAccess deployments where load balancing is provided using Network Load Balancing (NLB).

ISATAP Configuration

To do this, you must first create DNS A resource records for the internal IPv4 address for each DirectAccess server as well as the internal virtual IP address (VIP) assigned to the cluster.

DirectAccess Manage Out with ISATAP and NLB Clustering

Note: Do NOT use the name ISATAP. This name is included in the DNS query block list on most DNS servers and will not resolve unless it is removed. Removing it is not recommended either, as it will result in ALL IPv6-enabled hosts on the network configuring an ISATAP tunnel adapter.

Once the DNS records have been added, you can configure a single computer for manage out by opening an elevated PowerShell command window and running the following command:

Set-NetIsatapConfiguration -State Enabled -Router [ISATAP FQDN] -PassThru

DirectAccess Manage Out with ISATAP and NLB Clustering

Once complete, an ISATAP tunnel adapter network interface with a unicast IPv6 address will appear in the output of ipconfig.exe, as shown here.

DirectAccess Manage Out with ISATAP and NLB Clustering

Running the Get-NetRoute -AddressFamily IPv6 PowerShell command will show routes to the client IPv6 prefixes assigned to each DirectAccess server.

DirectAccess Manage Out with ISATAP and NLB Clustering

Finally, verify network connectivity from the manage out host to the remote DirectAccess client.

Note: There is a known issue with some versions of Windows 10 and Windows Server 2016 that may prevent manage out using ISATAP from working correctly. There’s a simple workaround, however. More details can be found here.

Group Policy Deployment

If you have more than a few systems on which to enable ISATAP manage out, using Active Directory Group Policy Objects (GPOs) to distribute these settings is a much better idea. You can find guidance for creating GPOs for ISATAP manage out here.

DirectAccess Client Firewall Configuration

Simply enabling ISATAP on a server or workstation isn’t all that’s required to perform remote management on DirectAccess clients. The Windows firewall running on the DirectAccess client computer must also be configured to securely allow remote administration traffic from the internal network. Guidance for configuring the Windows firewall on DirectAccess clients for ISATAP manage out can be found here.

ISATAP Manage Out for Multisite and ELB

The configuration guidance in this post will not work if DirectAccess multisite is enabled or external load balancers (ELB) are used. However, ISATAP can still be used. For more information about enabling ISATAP manage out with external load balancers and/or multisite deployments, fill out the form below and I’ll provide you with more details.

Summary

Once ISATAP is enabled for manage out, administrators on the internal network can remotely manage DirectAccess clients wherever they happen to be. Native Windows remote administration tools such as Remote Desktop, Windows Remote Assistance, and the Computer Management MMC can be used to manage remote DirectAccess clients. In addition, enterprise administration tools such as PowerShell remoting and System Center Configuration Manger (SCCM) Remote Control can also be used. Further, third-party remote administration tools such as VNC, TeamViewer, LogMeIn, GoToMyPC, Bomgar, and many others will also work with DirectAccess ISATAP manage out.

Additional Information

ISATAP Recommendations for DirectAccess Deployments

DirectAccess Manage Out with ISATAP Fails on Windows 10 and Windows Server 2016 

DirectAccess Client Firewall Rule Configuration for ISATAP Manage Out

DirectAccess Manage Out and System Center Configuration Manager (SCCM)

Contact Me

Interested in learning more about ISATAP manage out for multisite and external load balancer deployments? Fill out the form below and I’ll get in touch with you.

TechMentor Conference Orlando 2017

I'm Speaking at Live!360 and TechMentor Event 2017 in Orlando, Florida November 12-17. Join me!I’m pleased to announce that I’ll be speaking at the TechMentor Conference (which is part of Live! 360) in Orlando, FL. The event takes place November 12-17 and I will be delivering several sessions on DirectAccess, DNS policies, and network troubleshooting in Windows Server 2016. More details these sessions can be found here.

TMT02 – Implementing DirectAccess with Windows Server 2016

TMW01 – Network Troubleshooting for Windows Administrators

TMW04 – Introducing DNS Policies in Windows Server 2016

Sign up using promotion code LSPK34 and save $500.00. Register now!

 

 

Uninstalling and Removing DirectAccess

Uninstalling and Removing DirectAccess This web site is primarily dedicated to installing, configuring, managing, and troubleshooting DirectAccess on Windows Server 2012 R2 and Windows Server 2016. However, there’s little documentation on how to properly uninstall and remove DirectAccess. This post provides guidance for gracefully uninstalling and removing DirectAccess after it has been deployed.

DirectAccess Clients

It is recommended that all clients be deprovisioned prior to decommissioning a DirectAccess deployment. This is especially true if the Network Location Server (NLS) is hosted on the DirectAccess server itself. Remove all client computers from the DirectAccess client security group or unlink DirectAccess client settings GPOs (but don’t delete them!) from any OUs where they are applied. Allow sufficient time for all clients to process security group membership changes and update group policy before uninstalling DirectAccess.

Network Location Server

If the NLS is installed separate from the DirectAccess server, it is recommended that it remain online for a period of time after DirectAccess has been decommissioned. Clients will be unable to access local resources if they still have DirectAccess client settings applied and the NLS is offline. Keeping the NLS online prevents this from happening. If this does happen, you’ll need to delete the Name Resolution Policy Table (NRPT) on the client to restore connectivity. To do this, run the following command in an elevated PowerShell command window and restart the computer.

Get-Item -Path “HKLM:\SOFTWARE\Policies\Microsoft\Windows NT\DNSClient\DnsPolicyConfig” | Remove-Item -Confirm:$false

Uninstall DirectAccess

It is not recommended to decommission DirectAccess by simply turning off all DirectAccess servers and manually deleting all of the associated group policy objects (GPOs) in Active Directory. A better way is to gracefully remove DirectAccess using the GUI or PowerShell.

To uninstall DirectAccess using the GUI, open the Remote Access Management console, highlight DirectAccess and VPN, and then click Remove Configuration Settings in the Tasks pane.

Uninstalling and Removing DirectAccess

Alternatively, DirectAccess can be removed by running the following command in an elevated PowerShell command window.

Uninstall-RemoteAccess -Force

Additional Resources

DirectAccess Network Location Server (NLS) Guidance

DirectAccess Network Location Server (NLS) Deployment Considerations for Large Enterprises

Implementing DirectAccess with Windows Server 2016

Deploying DirectAccess in Microsoft Azure

Introduction

DirectAccess Now a Supported Workload in Microsoft AzureMany organizations are preparing to implement DirectAccess on Microsoft’s public cloud infrastructure. Deploying DirectAccess in Azure is fundamentally no different than implementing it on premises, with a few important exceptions (see below). This article provides essential guidance for administrators to configure this unique workload in Azure.

Important Note: There has been much confusion regarding the supportability of DirectAccess in Azure. Historically it has not been supported. Recently, it appeared briefly that Microsoft reversed their earlier decision and was in fact going to support it. However, the Microsoft Server Software Suport for Microsoft Azure Virtual Machines document has once again been revised to indicate that DirectAccess is indeed no longer formally supported on Azure. More details can be found here.

Azure Configuration

The following is guidance for configuring network interfaces, IP address assignments, public DNS, and network security groups for deploying DirectAccess in Azure.

Virtual Machine

Deploy a virtual machine in Azure with sufficient resources to meet expected demand. A minimum of two CPU cores should be provisioned. A VM with 4 cores is recommended. Premium storage on SSD is optional, as DirectAccess is not a disk intensive workload.

Network Interfaces

It is recommended that an Azure VM with a single network interface be provisioned for the DirectAccess role. This differs from on-premises deployments where two network interfaces are preferred because deploying VMs in Azure with two NICs is prohibitively difficult. At the time of this writing, Azure VMs with multiple network interfaces can only be provisioned using PowerShell, Azure CLI, or resource manager templates. In addition, Azure VMs with multiple NICs cannot belong to the same resource group as other VMs. Finally, and perhaps most importantly, not all Azure VMs support multiple NICs.

Internal IP Address

Static IP address assignment is recommended for the DirectAccess VM in Azure. By default, Azure VMs are initially provisioned using dynamic IP addresses, so this change must be made after the VM has been provisioned. To assign a static internal IP address to an Azure VM, open the Azure management portal and perform the following steps:

  1. Click Virtual machines.
  2. Select the DirectAccess server VM.
  3. Click Network Interfaces.
  4. Click on the network interface assigned to the VM.
  5. Under Settings click IP configurations.
  6. Click Ipconfig1.
  7. In the Private IP address settings section choose Static for the assignment method.
  8. Enter an IP address for the VM.
  9. Click Save.

Deploying DirectAccess in Microsoft Azure

Public IP Address

The DirectAccess VM in Azure must have a public IP address assigned to it to allow remote client connectivity. To assign a public IP address to an Azure VM, open the Azure management portal and perform the following steps:

  1. Click Virtual machines.
  2. Select the DirectAccess server VM.
  3. Click Network Interfaces.
  4. Click on the network interface assigned to the VM.
  5. Under Settings click IP configurations.
  6. Click Ipconfig1.
  7. In the Public IP address settings section click Enabled.
  8. Click Configure required settings.
  9. Click Create New and provide a descriptive name for the public IP address.
  10. Choose an address assignment method.
  11. Click Ok and Save.

Deploying DirectAccess in Microsoft Azure

Deploying DirectAccess in Microsoft Azure

Public DNS

If the static IP address assignment method was chosen for the public IP address, create an A resource record in public DNS that resolves to this address. If the dynamic IP address assignment method was chosen, create a CNAME record in public DNS that maps to the public hostname for the DirectAccess server. To assign a public hostname to the VM in Azure, open the Azure management portal and perform the following steps:

  1. Click Virtual machines.
  2. Select the DirectAccess server VM.
  3. Click Overview.
  4. Click Public IP address/DNS name label.Deploying DirectAccess in Microsoft Azure
  5. Under Settings click Configuration.
  6. Choose an assignment method (static or dynamic).
  7. Enter a DNS name label.
  8. Click Save.

Deploying DirectAccess in Microsoft Azure

Note: The subject of the SSL certificate used for the DirectAccess IP-HTTPS listener must match the name of the public DNS record (A or CNAME) entered previously. The SSL certificate does not need to match the Azure DNS name label entered here.

Network Security Group

A network security group must be configured to allow IP-HTTPS traffic inbound to the DirectAccess server on the public IP address. To make the required changes to the network security group, open the Azure management portal and perform the following steps:

  1. Click Virtual machines.
  2. Select the DirectAccess server VM.
  3. Click Network interfaces.
  4. Click on the network interface assigned to the VM.
  5. Under Settings click Network security group.
  6. Click the network security group assigned to the network interface.
  7. Click Inbound security rules.
  8. Click Add and provide a descriptive name for the new rule.
  9. Click Any for Source.
  10. From the Service drop-down list choose HTTPS.
  11. Click Allow for Action.
  12. Click Ok.

Deploying DirectAccess in Microsoft Azure

Note: It is recommended that the default-allow-rdp rule be removed if it is not needed. At a minimum, scope the rule to allow RDP only from trusted hosts and/or networks.

DirectAccess Configuration

When performing the initial configuration of DirectAccess using the Remote Access Management console, the administrator will encounter the following warning message.

“One or more network adapters should be configured with a static IP address. Obtain a static address and assign it to the adapter.”

Deploying DirectAccess in Microsoft Azure

This message can safely be ignored because Azure infrastructure handles all IP address assignment for hosted VMs.

The public name of the DirectAccess server entered in the Remote Access Management console must resolve to the public IP address assigned to the Azure VM, as described previously.

Deploying DirectAccess in Microsoft Azure

Additional Considerations

When deploying DirectAccess in Azure, the following limitations should be considered.

Load Balancing

It is not possible to enable load balancing using Windows Network Load Balancing (NLB) or an external load balancer. Enabling load balancing for DirectAccess requires changing static IP address assignments in the Windows operating system directly, which is not supported in Azure. This is because IP addresses are assigned dynamically in Azure, even when the option to use static IP address assignment is chosen in the Azure management portal. Static IP address assignment for Azure virtual machines are functionally similar to using DHCP reservations on premises.

Deploying DirectAccess in Microsoft Azure

Note: Technically speaking, the DirectAccess server in Azure could be placed behind a third-party external load balancer for the purposes of performing SSL offload or IP-HTTPS preauthentication, as outlined here and here. However, load balancing cannot be enabled in the Remote Access Management console and only a single DirectAccess server per entry point can be deployed.

Manage Out

DirectAccess manage out using native IPv6 or ISATAP is not supported in Azure. At the time of this writing, Azure does not support IPv6 addressing for Azure VMs. In addition, ISATAP does not work due to limitations imposed by the underlying Azure network infrastructure.

Summary

For organizations moving infrastructure to Microsoft’s public cloud, formal support for the DirectAccess workload in Azure is welcome news. Implementing DirectAccess in Azure is similar to on-premises with a few crucial limitations. By following the guidelines outlined in this article, administrators can configure DirectAccess in Azure to meet their secure remote access needs with a minimum of trouble.

Additional Resources

Implementing DirectAccess in Windows Server 2016
Fundamentals of Microsoft Azure 2nd Edition
Microsoft Azure Security Infrastructure
DirectAccess Multisite with Azure Traffic Manager
DirectAccess Consulting Services

SSH Administration over a DirectAccess Connection

SSH Administration over a DirectAccess ConnectionFrom a client perspective, DirectAccess is an IPv6 only solution. All communication between the DirectAccess client and server takes place exclusively over IPv6. This can make things challenging for network engineers tasked with administering network devices using SSH over a DirectAccess connection. Often network devices don’t have corresponding hostname entries in DNS, and attempting to connect directly to an IPv4 address over a DirectAccess connection will fail.

To resolve this issue, it is necessary to create internal DNS records that resolve to IPv4 addresses for each network device. With that, the DNS64 service on the DirectAccess server will create an IPv6 address for the DirectAccess client to use. The NAT64 service will then translate this IPv6 address to IPv4 and connectivity will be established.

However, for many large organizations this might not be feasible. You may have hundreds or thousands of devices on your network to administer, and creating records in DNS for all these devices will take some time. As a temporary workaround, it is possible to determine the NAT64 IPv6 address for any network device and use that for remote network administration.

The process is simple. On a client that is connected remotely via DirectAccess, resolve the name of a known internal server to an IP address. The quickest and easiest way to do that is simply to ping an internal server by its hostname and note the IPv6 address it resolves to.

SSH Administration over a DirectAccess Connection

Now copy the first 96 bits of that address (everything up to and including the 7777::) and then append the IPv4 address of the network device you wish to manage in familiar dotted-decimal notation. The IPv6 address you create should look something like this:

fd74:45f9:4fae:7777::172.16.1.254

Enter this IPv6 address in whichever tool you use to manage your network devices and it should work. Here’s an example using the popular Putty tool connecting via SSH to a network device in my lab.

SSH Administration over a DirectAccess Connection

Figure 1 – DirectAccess Client IPv6 Prefix w/Appended IPv4 Address

SSH Administration over a DirectAccess Connection

Figure 2 – Successful connection over DirectAccess with Putty.

Going forward I would strongly recommend that you make it part of your normal production implementation process and procedures to create DNS records for all network devices. In the future you’ll absolutely have to do this for IPv6, so now is a good time to get in the habit of doing this. It will make your life a lot easier, trust me!

Please note that adding entries to the local HOSTS file of a DirectAccess client does not work! The name must be resolved by the DNS64 service on the DirectAccess server in order to work properly. Although you could populate the local HOSTS file with names and IPv6 addresses using the method I described above, it would cause problems when the client was on the internal network or connected remotely using traditional client-based VPN, so it is best to avoid using the HOSTS file altogether.

DirectAccess DNS Not Working Properly

Name resolution and proper DNS server configuration is vital to the functionality of DirectAccess. When performing initial configuration of DirectAccess, or making changes to the DNS server configuration after initial configuration, you may notice the operations status for DNS indicates Critical, and that the operations state shows Server responsiveness.

DirectAccess DNS Not Working Correctly

Highlighting the DNS server on the Operations Status page and viewing the details shows that DNS is not working properly with the following error message:

None of the enterprise DNS servers <IPv6_address> used by DirectAccess
clients for name resolution are responding. This might affect DirectAccess
client connectivity to corporate resources.

DirectAccess DNS Not Working Correctly

There are a number of things that can contribute to this problem, but a common cause is an error made when assigning a DNS server to a specific DNS suffix. An inexperienced DirectAccess administrator might specify the IPv4 address of an internal corporate DNS server, which is incorrect. The DNS server IPv4 address should be the address assigned to the DirectAccess server’s internal network interface.

The best way to ensure that the DNS server is configured correctly for DirectAccess is to delete the existing entry and then click Detect.

DirectAccess DNS Not Working Correctly

An IPv6 address will be added automatically. This is the IPv6 address of the DNS64 service running on the DirectAccess server, which is how the DNS server should be configured for proper DirectAccess operation.

DirectAccess DNS Not Working Correctly

Once the changes have been saved and applied, the DNS server should once again respond and the status should return to Working.

DirectAccess DNS Not Working Correctly

Configuring Multiple Windows Server 2012 R2 DirectAccess Instances

DirectAccess in Windows Server 2012 R2 supports many different deployment configurations. It can be deployed with a single server, multiple servers in a single location, multiple servers in multiple locations, edge facing, in a perimeter or DMZ network, etc.

Global Settings

There are a number of important DirectAccess settings that are global in scope and apply to all DirectAccess clients, such as certificate authentication, force tunneling, one-time password, and many more. For example, if you configure DirectAccess to use Kerberos Proxy instead of certificates for authentication, Windows 7 clients are not supported. In this scenario it is advantageous to have a second parallel DirectAccess deployment configured specifically for Windows 7 clients. This allows Windows 8 clients to take advantage of the performance gains afforded by Kerberos Proxy, while at the same time providing an avenue of support for Windows 7 clients.

Parallel Deployments

To the surprise of many, it is indeed possible to deploy DirectAccess more than once in an organization. I’ve been helping customers deploy DirectAccess for nearly five years now, and I’ve done this on more than a few occasions. In fact, there are some additional important uses cases that having more than one DirectAccess deployment can address.

Common Use Cases

QA and Testing – Having a separate DirectAccess deployment to perform testing and quality assurance can be quite helpful. Here you can validate configuration changes and verify updates without potential negative impact on the production deployment.

Delegated Administration – DirectAccess provides support for geographic redundancy, allowing administrators to create DirectAccess entry points in many different locations. DirectAccess in Windows Server 2012 R2 lacks support for delegated administration though, and in some cases it may make more sense to have multiple separate deployments as opposed to a single, multisite deployment. For example, many organizations are divided in to different business units internally and may operate autonomously. They may also have different configuration requirements, which can be better addressed using individual DirectAccess implementations.

Migration – If you have currently deployed DirectAccess using Windows Server 2008 R2 with or without Forefront UAG 2010, migrating to Windows Server 2012 R2 can be challenging because a direct, in-place upgrade is not supported. You can, however, deploy DirectAccess using Windows Server 2012 R2 in parallel to your existing deployment and simply migrate users to the new solution by moving the DirectAccess client computer accounts to a new security group assigned to the new deployment.

Major Configuration Changes – This strategy is also useful for scenarios where implementing changes to the DirectAccess configuration would be disruptive for remote users. For example, changing from a single site to a multisite configuration would typically require that all DirectAccess clients be on the LAN or connect remotely out-of-band to receive group policy settings changes after multisite is first configured. In addition, parallel deployments can significantly ease the pain of transitioning to a new root CA if required.

Unique Client Requirements – Having a separate deployment may be required to take advantage of the unique capabilities of each client operating system. For example, Windows 10 clients do not support Microsoft Network Access Protection (NAP) integration. NAP is a global setting in DirectAccess and applies to all clients. If you still require NAP integration and endpoint validation using NAP for Windows 7 and Windows 8.x, another DirectAccess deployment will be required to support Windows 10 clients.

Requirements

To support multiple Windows Server 2012 R2 DirectAccess deployments in the same organization, the following is required:

Unique IP Addresses – It probably goes without saying, but each DirectAccess deployment must have unique internal and external IPv4 addresses.

Distinct Public Hostname – The public hostname used for each deployment must also be unique. Multi-SAN certificates have limited support for DirectAccess IP-HTTPS (public hostname must be the first entry in the list), so consider using a wildcard certificate or obtain certificates individually for each deployment.

Group Policy Objects – You must use unique Active Directory Group Policy Objects (GPOs) to support multiple DirectAccess deployments in a single organization. You have the option to specify a unique GPO when you configure DirectAccess for the first time by clicking the Change link next to GPO Settings on the Remote Access Review screen.

Configuring Multiple Windows Server 2012 R2 DirectAccess Instances

Enter a distinct name for both the client and server GPOs. Click Ok and then click Apply to apply the DirectAccess settings for this deployment.

Configuring Multiple Windows Server 2012 R2 DirectAccess Instances

Windows 7 DirectAccess Connectivity Assistant (DCA) GPOs – If the DirectAccess Connectivity Assistant (DCA) v2.0 has been deployed for Windows 7 clients, separate GPOs containing the DCA client settings for each individual deployment will have to be configured. Each DirectAccess deployment will have unique Dynamic Tunnel Endpoint (DTE) IPv6 addresses which are used by the DCA to confirm corporate network connectivity. The rest of the DCA settings can be the same, if desired.

Supporting Infrastructure

The rest of the supporting infrastructure (AD DS, PKI, NLS, etc.) can be shared between the individual DirectAccess deployments without issue. Once you’ve deployed multiple DirectAccess deployments, make sure that DirectAccess clients DO NOT belong to more than one DirectAccess client security group to prevent connectivity issues.

Migration Process

Moving DirectAccess client computers from the old security group to the new one is all that’s required to migrate clients from one DirectAccess deployment to another. Client machines will need to be restarted to pick up the new security group membership, at which time they will also get the DirectAccess client settings for the new deployment. This works seamlessly when clients are on the internal network. It works well for clients that are outside the network too, for the most part. Because clients must be restarted to get the new settings, it can take some time before all clients finally moved over. To speed up this process it is recommended that DirectAccess client settings GPOs be targeted at a specific OUs created for the migration process. A staging OU is created for clients in the old deployment and a production OU is created for clients to be assigned to the new deployment. DirectAccess client settings GPOs are then targeted at those OUs accordingly. Migrating then only requires moving a DirectAccess client from the old OU to the new one. Since OU assignment does not require a reboot, clients can be migrated much more quickly using this method.

Summary

DirectAccess with Windows Server 2012 R2 supports many different deployment models. For a given DirectAccess deployment model, some settings are global in scope and may not provide the flexibility required by some organizations. To address these challenges, consider a parallel deployment of DirectAccess. This will enable you to take advantage of the unique capabilities of each client operating system, or allow you to meet the often disparate configuration requirements that a single deployment cannot support.

DirectAccess DNS Records Explained

After installing and configuring DirectAccess with Windows Server 2012 R2, several new host records appear automatically in the internal DNS (assuming dynamic DNS is supported, of course). One of them is directaccess-corpConnectivityHost and the other is directaccess-WebProbeHost. These DirectAccess DNS entries are used by Windows 8 and later clients for connectivity checks at various stages of DirectAccess connection establishment.

DirectAccess DNS Records Explained

Figure 1 – DirectAccess DNS records for IPv4-only network.

DirectAccess DNS Records Explained

Figure 2 – DirectAccess DNS records for dual-stack IPv4/IPv6 network.

Here is a detailed description for each of these DirectAccess DNS entries.

directaccess-corpConnectivityHost – This DNS host record includes both A and AAAA records when deployed on IPv4-only networks. Its A host record resolves to 127.0.0.1, which is the IPv4 loopback address. Its AAAA host record resolves to an IPv6 address that is a combination of the DirectAccess NAT64 IPv6 prefix and 7F00:1 (the hexadecimal equivalent of 127.0.0.1). When DirectAccess is configured on a network with native IPv6, the directaccess-corpConnectivityHost DNS record will only include a single AAAA record resolving to ::1.

This host record is used by the DirectAccess client to determine if name resolution for the corporate namespace is working after the IPv6 transition tunnel (6to4, Teredo, or IP-HTTPS) has been established. It does this by attempting to resolve the hostname directaccess-corpConnectivityHost.<corp_fqdn> (e.g. directaccess-corpConnectivityHost.corp.example.net) to an IPv6 address that it expects (the organization’s NAT64 prefix + 7F00:1 or ::1). If it does not resolve, or resolves to a different address, the client will assume that the transition tunnel was not established successfully and, if possible, fall back to another IPv6 transition protocol and repeat the process until it is successful.

Note: The DirectAccess client does not attempt to connect to the IP address resolved by directaccess-corpConnectivityHost. It simply compares the IP address returned by the query to the expected address (NAT64 prefix + 7F00:1 or ::1).

directaccess-WebProbeHost – This DNS host record includes only A records and resolves to the IPv4 address assigned to the internal network interface of the DirectAccess server. If load balancing is enabled, this host record will resolve to the virtual IP address (VIP) of the array. For multisite deployments there will be directaccess-WebProbeHost A host records for each entry point in the organization.

This host record is used by the DirectAccess client to verify end-to-end corporate network connectivity over the DirectAccess connection. The client will attempt to connect to the directaccess-WebProbeHost URL using HTTP. If successful, the DirectAccess connectivity status indicator will show Connected.

If any of these DirectAccess DNS records are missing or incorrect, a number of issues may arise. If the directaccess-corpConnectivityHost host record is missing or incorrect, DirectAccess IPv6 transition tunnel establishment may fail. If the directaccess-WebProbeHost record is missing or incorrect, the DirectAccess connectivity status indicator will perpetually show Connecting. This commonly occurs when an external load balancer is used and a virtual server isn’t created for the web probe host port (TCP 80). In addition, these DirectAccess DNS entries are not static and may be deleted if DNS scavenging of stale resource records is enabled on the DNS server.

%d bloggers like this: