Always On VPN and Cloud PKI for Intune Error 853

Microsoft Cloud PKI for Intune is a PKI-as-a-Service offering that allows organizations to issue and manage digital certificates without on-premises infrastructure. Certificates are excellent phishing-resistant credentials that are well-suited for applications requiring strong authentication, such as secure remote access with Always On VPN. However, administrators may encounter errors when attempting to authenticate users or devices using certificates issued by Cloud PKI for Intune.

Error 853

After publishing certificates with Cloud PKI for Intune and configuring the on-premises Always On VPN infrastructure to support this, administrators will find that the Always On VPN connection fails to connect. Attempts to manually start the connection result in the following error message.

“The remote access connection completed, but authentication failed because the certificate that authenticates the client to the server is not valid. Ensure the certificate used for authentication is valid.”

In the event log on the Windows client, you’ll find an event ID 20227 from the RasClient source that includes the following error message.

“The user <domain>\<user> dialed a connection named <VPN connection name> which has failed. The error code returned on failure is 853.”

Error 853 (ERROR_EAP_USER_CERT_INVALID) indicates the user certificate is invalid.

Certificate

Upon further investigation, the certificate shows no issues, is valid, is trusted, and has a private key.

NPS

Looking at the event log on the Network Policy Server (NPS), you’ll find a corresponding event ID 6273 from the Microsoft Windows security auditing source that includes the following error message.

“Network Policy Server denied access to a user.”

Looking at the authentication details section of this event log entry yields the following important clue.

Reason Code: 258
Reason: The revocation function was unable to check revocation for the certificate.

Failed Revocation Check

Since the NPS server indicates that it rejected the authentication request because it could not perform a revocation check, let’s bring the user authentication certificate to the NPS server and perform some tests.

Export Certificate

Open the user certificate store (certmgr.msc) on the client and expand Personal > Certificates. Right-click on the certificate in question and choose All Tasks > Export. Export the certificate only (not the private key) and copy the file to the NPS server.

Verify Certificate

Open a PowerShell or command window on the NPS server and run the following command to validate the certificate.

certutil.exe -verify -urlfetch <path to exported certificate>

For example.

certutil.exe -verify -urlfecth .\rdeckard.cer

The command generates a lot of output, but if you look at the very end of the data stream, you’ll see two interesting items.

  • Revocation check skipped – no revocation information available
  • Leaf certificate revocation check passed

Based on this information the user certificate (the leaf certificate) passed a revocation check. However, it would appear that another certificate in the chain does not include revocation information. Since there is only a root and issuing CA in the chain, and root certificates don’t include revocation information because they are the self-signed root of trust, it would appear that revocation information is missing from the issuing CA certificate.

We can confirm this by scrolling up in the previous command’s output to where the verification of the issuing CA certificate takes place. Here, you’ll see that the issuing CA certificate is missing CDP (CRL Distribution Point) information.

When NPS attempts to validate the certificate and the certificate chain, it expects to find CDP information, which it will use to check if the issuing CA certificate has been revoked. The revocation check fails without this information, and the authentication request is rejected.

Design Error?

Missing CDP information is not unusual for end-entity (leaf) certificates when they are short-lived. An example is Entra ID conditional access certificates, which do not include CDP information by design. However, I expect this information to be listed on an issuing CA certificate. Why it’s not there, I’m not sure. I’ll investigate this in more depth and report on anything I learn that’s new.

Workaround

To move forward using Cloud PKI for Intune certificates with Always On VPN, administrators must implement the following registry setting on all NPS servers handling authentication requests for Always On VPN servers.

Key = HKLM\SYSTEM\CurrentControlSet\Services\RasMan\PPP\EAP\13
Name = IgnoreNoRevocationCheck
Type = DWORD
Value = 1

To implement this change using PowerShell, open an elevated PowerShell command window and run the following command.

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Services\RasMan\PPP\EAP\13\’ -Name IgnoreNoRevocationCheck -PropertyType DWORD -Value 1 -Force

Once complete, restart the NPS server for the changes to take effect.

Additional Information

Cloud PKI for Microsoft Intune

Cloud PKI for Microsoft Intune and Active Directory

Cloud PKI for Microsoft Intune and Certificate Templates

Strong Certificate Mapping for Microsoft Intune PKCS and SCEP Certificates

Troubleshooting Intune Failed PKCS Request

Cloud PKI for Microsoft Intune SCEP URL

Delete A Cloud PKI for Microsoft Intune Certificate Authority

Cloud PKI for Microsoft Intune on RunAs Radio Podcast

Mastering Certificates with Microsoft Intune Online Training

Always On VPN and Blast-RADIUS

Microsoft released an update for the Windows Server Network Policy Server (NPS) to address recently disclosed vulnerabilities in the Remote Access Dial-In User Service (RADIUS) protocol in the July 2024 security updates. RADIUS is an industry-standard authentication protocol widely used for remote access, including Always On VPN. The RADIUS protocol was first introduced in the early 1990s and, unfortunately, still relies on the deprecated MD5 cryptographic hash function. The good news is that this vulnerability does not affect Always On VPN. Read on to learn more.

Blast-RADIUS

Blast-RADIUS is an attack on the RADIUS protocol that allows an attacker to alter network authentication packets to gain access to a service relying on RADIUS for authentication by exploiting the weakness of MD5 integrity checks in RADIUS. In the absence other controls, an attacker could alter an authentication response and change the reply from Access-Reject to Access-Accept.

Considerations

It’s important to note that leveraging this attack is not trivial. It requires local network access, so the attacker must have a presence on the target network to carry out this attack. However, cloud-hosted RADIUS services are inherently more vulnerable. In addition, the attack is mostly academic today because the default timeout for authentication requests is typically short, usually between 5 and 30 seconds. This is not enough time (today) for an attacker to mount the attack. However, this attack could become more feasible if authentication timeouts are increased (sometimes required to support MFA) or if an attacker has access to vast computing resources.

Affected Protocols

Although Blast-RADIUS is a vulnerability in the RADIUS protocol itself, not all authentication protocols are affected. Specifically, this vulnerability affects services leveraging PAP, CHAP, MS-CHAP, and MS-CHAPv2. Extensible Authentication Protocol (EAP) and Protected Extensible Authentication Protocol (PEAP) are not vulnerable to this attack. Since Always On VPN requires EAP authentication, it is not susceptible to this attack.

Mitigation

Microsoft has published guidance in KB5040268 for mitigating Blast-RADIUS attacks on Windows NPS servers. Specifically, administrators are encouraged to enable the Message-Authenticator attribute in Access-Request packets sent by the network access server and to ensure the NPS server requires the Message-Authenticator attribute in any Access-Request messages it receives.

Note: The following changes are not required for Always On VPN or any other workload using EAP-TLS or Protected EAP, as these protocols use TLS natively to protect the authentication exchange.

NPS

To configure this setting in the UI, open the NPS management console (nps.msc) and perform the following steps.

  1. Expand RADIUS Clients and Servers.
  2. Highlight RADIUS Clients.
  3. Right-click the RADIUS client to configure and choose Properties.
  4. Select the Advanced tab.
  5. Check the box next to Access-Request messages must contain the Message-Authenticator attribute.

PowerShell

To configure this setting using PowerShell, open an elevated PowerShell command window and run the following command.

Set-NpsRadiusClient -Name <RADIUS client name> -AuthAttributeRequired $True

Additional NPS Settings

Administrators should also run the following commands on their NPS servers to further protect their infrastructure from Blast-RADIUS attacks.

netsh.exe nps set limitproxystate all = enable

netsh.exe nps set requiremsgauth all = enable

RRAS

When using Windows Server Routing and Remote Access (RRAS) without EAP, ensure the RADIUS server configuration always includes the Message-Authenticator. To configure this setting, open the Routing and Remote Access console (rrasmgmt.msc) on the RRAS server and perform the following steps.

  1. Right-click the VPN server and choose Properties.
  2. Select the Security tab.
  3. Click the Configure button next to the Authentication provider drop-down list.
  4. Highlight the RADIUS server and choose Edit.
  5. Check the box next to Always use message authenticator.

Repeat these steps for any additional configured RADIUS servers.

CLI

Administrators can implement this change at the command line by opening an elevated command window and entering the following command.

netsh.exe ras aaaa set authserver name = <name of RADIUS server> signature = enabled

For example:

netsh.exe ras aaaa set authserver name = nps.lab.richardhicks.net signature = enabled

New NPS Events

After installing the KB5040268 update on NPS servers, the NPS server will record event ID 4421 from the NPS source after a service start if the RequireMsgAuth or LimitProxyState settings are not configured.

“RequireMsgAuth and/or limitProxyState configuration is in Disable mode. These settings should be configured in Enable mode for security purposes.”

Optional Mitigation

If administrators cannot configure the above settings, consider using IPsec to secure network traffic at the transport layer. IPsec will protect all RADIUS traffic at the network layer to mitigate Blast-RADIUS attacks. Unfortunately, Windows Server NPS does not support TLS or DTLS, so IPsec is your only option.

Summary

Always On VPN is not vulnerable to the Blast-RADIUS attack. However, NPS is commonly a shared service in many organizations, and other workloads may use older, vulnerable protocols. Consider implementing the changes detailed in KB5040268 as outlined in above to ensure the integrity of your environment and mitigate these potential attacks.

More Information

Microsoft KB5040268: how to manage Access-Request packets attack vulnerability associated with CVE-2024-3596

RADIUS Protocol Vulnerability Exposes Networks to MitM Attacks

New Blast-RADIUS attack breaks 30-year-old protocol used in networks everywhere

Overview of Microsoft Protected Extensible Authentication Protocol (PEAP)

Always On VPN NPS Auditing and Logging

Considerations for Always On VPN with Azure VPN Gateway and Virtual WAN

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Organizations migrating on-premises applications, data, and infrastructure to the cloud may also consider terminating Always On VPN connections there. Using one of the native Azure VPN services might be compelling at first glance. After all, having an Azure-managed VPN gateway service sounds intuitive. However, some severe limitations exist for using Azure VPN services for Always On VPN deployments.

Azure VPN Gateway

The following are limitations for Always On VPN with Azure VPN gateway.

Authentication Methods

Azure VPN gateway supports both EAP and machine certificate authentication. However, it can only support one authentication method at a time. With only EAP or certificate authentication, administrators must choose between a device or user tunnel. A single Azure VPN gateway cannot support both at the same time. For native Entra ID joined devices, this is not a problem. However, for native on-premises Active Directory or hybrid Entra ID joined devices, this is a problem, as the device tunnel is essential in these scenarios.

Note: Technically speaking, administrators could deploy another Azure VPN gateway to work around this limitation. However, Azure limits VPN gateway deployments to one per virtual network. This requires administrators to deploy a second VPN gateway in a separate virtual network, which then requires virtual network peering to be enabled, complicating the configuration greatly.

SSTP

Although the Azure VPN gateway supports SSTP, it is, unfortunately, a second-class citizen. Today, all SKUs of the Azure VPN gateway are limited to just 128 SSTP connections (256 in active/active mode). There is currently no way to increase this. If more than 256 connections are required, you must use IKEv2.

RADIUS

In addition, there is currently no option to change the default timeout value (30 seconds) for RADIUS authentication requests. This short timeout value presents a challenge when using MFA with the NPS extension or with Azure Conditional Access, as users may be unable to respond to the push notification before the timeout expires, resulting in failed authentication attempts.

In addition, Azure does not support routing traffic to on-premises RADIUS servers over ExpressRoute connections. In this scenario, administrators must route RADIUS traffic to on-premises servers over a site-to-site connection.

Geographic Redundancy

Geographic redundancy using Azure Traffic Manager (or another global server load balancer) with two or more gateways is not supported when using the Azure VPN gateway. Azure manages the certificate used on the gateway, which includes a certificate with the subject name of the individual gateway. There is no option to supply a custom certificate with a global hostname in the subject, which is required to support geographic redundancy. With that, administrators are limited to the redundancy provided natively by the Azure VPN gateway.

IPv6

Azure does not support Azure VPN gateway in a virtual network that includes IPv6 addressing.

Azure Virtual WAN

Azure Virtual WAN includes many of the same limitations as the Azure VPN gateway, in addition to the following.

SSTP

Unlike the Azure VPN gateway, there is no support for SSTP in Azure Virtual WAN.

IPv6

IPv6 is not currently supported at all in Azure Virtual WAN.

Summary

Intuitively, it seems that leveraging native Azure VPN gateway services would be ideal. However, due to the limitations outlined in this article, administrators must decide carefully if any of these prevent adoption in their environment. Although not formally supported, many organizations deploy Windows Server Routing and Remote Access (RRAS) servers in Azure to address these limitations.

Additional Information

Always On VPN Options for Azure Deployments

Always On VPN with Azure Gateway

Always On VPN Device Tunnel with Azure VPN Gateway

Always On VPN and RRAS in Azure

What is Azure VPN Gateway?

What is Azure Virtual WAN?