Troubleshooting Always On VPN Error Code 864

When configuring an Always On VPN connection, the administrator may encounter a scenario in which a VPN connection fails using either Internet Key Exchange version 2 (IKEv2) or Secure Socket Tunneling Protocol (SSTP). On the Windows 10 client the error message states the following.

“Can’t connect to [connection name]. The remote access connection completed, but authentication failed because a certificate that validates the server certificate was not found in the Trusted Root Certification Authorities certificate store.”

Troubleshooting Always On VPN Error Code 864

In addition, the Application event log records an error message with Event ID 20227 from the RasClient source. The error message states the following.

“The user [username] dialed a connection name [connection name] which has failed. The error code returned on failure is 864.”

Troubleshooting Always On VPN Error Code 864

NPS Server Certificate

Error code 864 is commonly caused by a missing or invalid server certificate on the Network Policy Server (NPS) performing authentication for VPN clients. The NPS server must have a certificate installed in its local computer certificate store from a trusted certification authority (CA) that includes the following.

Subject Name

The subject name must match the hostname defined in the EAP configuration for VPN clients. This may be the NPS server’s hostname but could also be an alias when NPS load balancing is configured.

Troubleshooting Always On VPN Error Code 864

Enhanced Key Usage

The NPS server certificate must include the Server Authentication Enhanced Key Usage (EKU).

Troubleshooting Always On VPN Error Code 864

NPS Policy Configuration

The NPS server certificate must also be selected in the network policy used for VPN client authentication. To confirm correct certificate configuration, open the properties for the Always On VPN network policy and follow the steps below.

1. Select the Constraints tab.
2. Highlight Authentication Methods.
3. Highlight Microsoft: Protected EAP (PEAP) in the EAP Types field.
4. Click Edit.
5. Select the NPS server certificate from the Certificate issued to drop-down list.

Troubleshooting Always On VPN Error Code 864

Ensure the NPS server certificate is also used for client certificate authentication by performing the following steps.

1. Highlight Smart Card or other certificate.
2. Click Edit.
3. Select the NPS server certificate from the Certificate issued to drop-down list.
4. Click Ok.

Troubleshooting Always On VPN Error Code 864

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Always On VPN Users Prompted for Certificate

Always On VPN Users Prompted for CertificateWhen deploying Windows 10 Always On VPN using Protected Extensible Authentication Protocol (PEAP) authentication with client certificates, administrators may find the VPN connection does not establish automatically. In this specific scenario the client is prompted to select a certificate to use to authenticate to the VPN server.

Always On VPN Users Prompted for Certificate

Multiple Certificates

This can occur when certificates from multiple Certification Authorities (CAs) are issued to the user that include the Client Authentication Enhanced Key Usage (EKU). When this happens, the user is forced to select the correct certificate to use for VPN authentication.

Clearly this is less than ideal, as it not only breaks the seamless and transparent nature of Always On VPN, the user may select the wrong certificate resulting in authentication failure. Ideally the client should be configured to select the correct certificate without user interaction.

Certificate Selection

Follow the steps below to configure automatic certificate selection for VPN authentication.

  1. On a VPN client, right-click the Always On VPN connection and choose Properties.
  2. Select the Security tab.
  3. In the Authentication section click Properties below Use Extensible Authentication Protocol (EAP).
  4. In the Select Authentication Method section click Configure.
  5. In the When connecting section click Advanced.
  6. Check the box next to Certificate Issuer.
  7. Select the root CA used to issue client authentication certificates for VPN authentication.
  8. Click Ok four times to save the configuration.

Always On VPN Users Prompted for Certificate

Once complete, export the EAP configuration to XML from the VPN client and paste the new settings in Intune or in your custom ProfileXML.

Certificate Purpose

By default, a client certificate requires only the Client Authentication EKU to establish a VPN connection. In some cases, this may not be desirable. For example, consider a deployment where Client Authentication certificates are issued to all users for Wi-Fi authentication. Depending on the Network Policy Server (NPS) configuration, these certificates may also be used to authenticate to the VPN.

VPN Specific Certificate

Follow the steps below to create a user authentication certificate template to be used exclusively for VPN authentication.

Certificate Template

  1. On the CA server, open the Certificate Templates management console (certtmpl.msc).
  2. Right-click the certificate template configured for VPN authentication and choose Properties.
  3. Select the Extension tab.
  4. Highlight Application Policies and click Edit.
  5. Click Add.
  6. Click New.
  7. Enter a descriptive name for the new application policy.
  8. Copy the Object identifier for later use and click Ok four times to save the configuration.

    Always On VPN Users Prompted for Certificate

  9. If certificate autoenrollment is configured and the certificate is already provisioned to users, right-click the certificate template and choose Reenroll All Certificate holders.

Client Configuration

  1. On the VPN client, follow the steps outlined previously to configure certificate selection.
  2. In addition to choosing a certificate issuer, select Extended Key Usage (EKU).
  3. Uncheck All Purpose.
  4. Select Client Authentication and the following EKUs.
  5. Click Add.
  6. Click Add once more.
  7. Enter the name of the custom EKU policy created previously.
  8. Enter the custom EKU object identifier copied previously from the custom policy.

    Always On VPN Users Prompted for Certificate

  9. Click Ok twice.
  10. Uncheck AnyPurpose and the following EKUs.
  11. Click Ok four times to save the configuration.

Always On VPN Users Prompted for Certificate

Once complete, export the EAP configuration to XML from the VPN client and paste the new settings in Intune or in your custom ProfileXML.

Additional Information

Windows 10 Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Get-EapConfiguration PowerShell Script on GitHub

Windows 10 Always On VPN Hands-On Training

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Always On VPN Clients Prompted for Authentication when Accessing Internal ResourcesWhen deploying Windows 10 Always On VPN using Protected Extensible Authentication Protocol (PEAP) with client authentication certificates, the administrator may encounter a scenario in which the user can establish a VPN connection without issue, but when accessing internal resources they are prompted for credentials and receive the following error message.

“The system cannot contact a domain controller to service the authentication request. Please try again later.”

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Resolution

This can occur if one or more domain controllers in the enterprise have expired or missing domain controller authentication certificates. To ensure seamless single sign-on to internal resources, ensure that all domain controllers have a certificate issued by the internal certification authority (CA) that includes the Server Authentication (1.3.6.1.5.5.7.3.1), Client Authentication (1.3.6.1.5.5.7.3.2), KDC Authentication (1.3.6.1.5.2.3.5), and Smart Card Logon (1.3.6.1.4.1.311.20.2.2) Enhanced Key Usage (EKU). Administrators can duplicate the Kerberos Authentication template for this purpose.

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Additional Information

Windows 10 Always On VPN Certificate Requirements for IKEv2

Windows 10 Always On VPN Hands-On Training

 

Always On VPN and Azure MFA ESTS Token Error

Always On VPN and Azure MFA ESTS Token ErrorConfiguring Multifactor Authentication (MFA) is an excellent way to ensure the highest level of assurance for Always On VPN users. Azure MFA is widely deployed and commonly integrated with Windows Server Network Policy Server (NPS) using the NPS Extension for Azure MFA. Azure MFA has a unique advantage over many other MFA providers in that it supports MFA when using Protected Extensible Authentication Protocol (PEAP). This makes Azure MFA the solution of choice for integrating with Windows 10 Always On VPN deployments using client certificate authentication, a recommended security configuration best practice.

NPS Configuration

Installing and configuring the NPS extension for Azure MFA is straightforward. Configuration guidance from Microsoft can be found here.

Connection Issues

After installing the NPS extension for Azure MFA, administrators may find that Always On VPN connections fail and the user is never challenged for authentication. The connection eventually times out and returns the following error message.

“A connection to the remote computer could not be established, so the port used for this connection was closed.”

Always On VPN and Azure MFA ESTS Token Error

In addition, the Application event log on the Windows 10 client contains an Event ID 20221 from the RasClient source that includes the following error message.

“The user [username] dialed a connection named [connection] which has failed. The error code returned on failure is 0.”

Always On VPN and Azure MFA ESTS Token Error

NPS Event Log

Reviewing the event logs on the NPS server reveals more information. The Security event log contains an Event ID 6274 from the Microsoft Windows security auditing source that includes the following error message.

“Network Policy Server discarded the request for a user. Contact the Network Policy Administrator for more information.”

Always On VPN and Azure MFA ESTS Token Error

ESTS Token Error

Digging deeper in the operational event log on the NPS server, the AuthZAdminCh log (Applications and Services Logs > Microsoft > AzureMfa > AuthZ) contains an Event ID 3 from the AuthZ source indicating an ESTS_TOKEN_ERROR message.

Always On VPN and Azure MFA ESTS Token Error

Troubleshooting ESTS Token Error

Follow the steps below to troubleshoot the ESTS_TOKEN_ERROR.

Prerequisites

Ensure that all prerequisites are met. Validate the user is being synced to Azure Active Directory and that it is properly licensed for Azure MFA.

Certificates

As part of the NPS extension configuration, a certificate is created on the NPS server that is uploaded to Azure Active Directory. To validate the certificate was created and uploaded correctly, follow the troubleshooting guidance found here.

Enterprise Applications

The Azure Multi-Factor Auth Client and the Azure Multi-Factor Auth Connector enterprise applications must be enabled to support the NPS extension for Azure MFA. To confirm they are enabled, open an elevated PowerShell command window on the server where the Azure AD Connector is installed and run the following PowerShell commands.

Import-Module MSOnline
Connect-MsolService

Get-MsolServicePrincipal -AppPrincipalId “981f26a1-7f43-403b-a875-f8b09b8cd720” | Select-Object DisplayName, AccountEnabled

Get-MsolServicePrincipal -AppPrincipalId “1f5530b3-261a-47a9-b357-ded261e17918” | Select-Object DisplayName, AccountEnabled

Always On VPN and Azure MFA ESTS Token Error

If either or both enterprise applications are not enabled, enable them using the following PowerShell commands.

Set-MsolServicePrincipal -AppPrincipalId “981f26a1-7f43-403b-a875-f8b09b8cd720” -AccountEnabled $True

Set-MsolServicePrincipal -AppPrincipalId “1f5530b3-261a-47a9-b357-ded261e17918” -AccountEnabled $True

Once complete, restart the IAS service on the NPS server using the following PowerShell command.

Restart-Service IAS -PassThru

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing Strategies

Deploy Windows 10 Always On VPN with Microsoft Intune

Windows 10 Always On VPN Hands-On Training Classes Now Available

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load BalancingLoad balancing Windows Server Network Policy Servers (NPS) is straightforward in most deployment scenarios. Most VPN servers, including Windows Server Routing and Remote Access Service (RRAS) servers allow the administrator to configure multiple NPS servers for redundancy and scalability. In addition, most solutions support weighted distribution, allowing administrators to distribute requests evenly between multiple NPS servers (round robin load balancing) or to distribute them in order of priority (active/passive failover).

The Case for NPS Load Balancing

Placing NPS servers behind a dedicated network load balancing appliance is not typically required. However, there are some deployment scenarios where doing so can provide important advantages.

Deployment Flexibility

Having NPS servers fronted by a network load balancer allows the administrator to configure a single, virtual IP address and hostname for the NPS service. This provides deployment flexibility by allowing administrators to add or remove NPS servers without having to reconfigure VPN servers, network firewalls, or VPN clients. This can be beneficial when deploying Windows updates, migrating NPS servers to different subnets, adding more NPS servers to increase capacity, or performing rolling upgrades of NPS servers.

Traffic Shaping

Dedicated network load balancers allow for more granular control and of NPS traffic. For example, NPS routing decisions can be based on real server availability, ensuring that authentication requests are never sent to an NPS server that is offline or unavailable for any reason. In addition, NPS traffic can be distributed based on server load, ensuring the most efficient use of NPS resources. Finally, most load balancers also support fixed or weighted distribution, enabling active/passive failover scenarios if required.

Traffic Visibility

Using a network load balancer for NPS also provides better visibility for NPS authentication traffic. Most load balancers feature robust graphical displays of network utilization for the virtual server/service as well as backend servers. This information can be used to ensure enough capacity is provided and to monitor and plan for additional resources when network traffic increases.

Configuration

Before placing NPS servers behind a network load balancer, the NPS server certificate must be specially prepared to support this unique deployment scenario. Specifically, the NPS server certificate must be configured with the Subject name of the cluster, and the Subject Alternative Name field must include both the cluster name and the individual server’s hostname.

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load Balancing

Create Certificate Template

Perform the following steps to create a certificate template in AD CS to support NPS load balancing.

  1. Open the Certificate Templates management console (certtmpl.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Right-click the RAS and IAS Servers default certificate template and choose Duplicate.
  3. Select the Compatibility tab.
    1. Select Windows Server 2008 or a later version from the Certification Authority drop-down list.
    2. Select Windows Vista/Server 2008 or a later version from the Certificate recipient drop-down list.
  4. Select the General tab.
    1. Enter a descriptive name in the Template display name field.
    2. Choose an appropriate Validity period and Renewal period.
    3. Do NOT select the option to Publish certificate in Active Directory.
  5. Select the Cryptography tab.
    1. Chose Key Storage Provider from the Provider Category drop-down list.
    2. Enter 2048 in the Minimum key size field.
    3. Select SHA256 from the Request hash drop-down list.
  6. Select the Subject Name tab.
    1. Select the option to Supply in the request.
  7. Select the Security tab.
    1. Highlight RAS and IAS Servers and click Remove.
    2. Click Add.
    3. Enter the security group name containing all NPS servers.
    4. Check the Read and Enroll boxes in the Allow column in the Permissions for [group name] field.
  8. Click Ok.

Perform the steps below to publish the new certificate template in AD CS.

  1. Open the Certification Authority management console (certsrv.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Expand Certification Authority (hostname).
  3. Right-click Certificate Templates and choose New and Certificate Template to Issue.
  4. Select the certificate template created previously.
  5. Click Ok.

Request Certificate on NPS Server

Perform the following steps to request a certificate for the NPS server.

  1. Open the Certificates management console (certlm.msc) on the NPS server.
  2. Expand the Personal folder.
  3. Right-click Certificates and choose All Tasks and Request New Certificate.
  4. Click Next.
  5. Click Next.
  6. Select the NPS server certificate template and click More information is required to enroll for this certificate link.
  7. Select the Subject tab.
    1.  Select Common name from the Type drop-down list in the Subject name section.
    2. Enter the cluster fully-qualified hostname (FQDN) in the Value field.
    3. Click Add.
    4. Select DNS from the Type drop-down list in the Alternative name section.
    5. Enter the cluster FQDN in the Value field.
    6. Click Add.
    7. Enter the NPS server’s FQDN in the Value field.
    8. Click Add.
      Always On VPN and Network Policy Server (NPS) Load Balancing
  8. Select the General tab.
    1. Enter a descriptive name in the Friendly name field.
  9. Click Ok.
  10. Click Enroll.

Load Balancer Configuration

Configure the load balancer to load balance UDP ports 1812 (authentication) and 1813 (accounting). Optionally, to ensure that authentication and accounting requests go to the same NPS server, enable source IP persistence according to the vendor’s guidance. For the KEMP LoadMaster load balancer, the feature is called “port following”. On the F5 BIG-IP it is called a “persistence profile”, and on the Citrix NetScaler it is called a “persistency group”.

Additional Information

Always On VPN IKEv2 Load Balancing with KEMP LoadMaster

Always On VPN Hands-On Training Classes in U.S. and Europe

Always On VPN and Windows Server 2019 NPS Bug

Note: This post updated March 19,2019 to reflect new workaround configuration guidance.

When deploying a Windows Server 2019 Network Policy Server (NPS) to support a Windows 10 Always On VPN implementation, administrators may encounter the following error when attempting to establish a VPN connection on a remote Windows 10 client.

Can’t connect to [connection name].

The connection was prevented because of a policy configured on your RAS/VPN server. Specifically, the authentication method used by the server to verify your username and password may not match the authentication method configured in your connection profile. Please contact the Administrator of the RAS server and notify them of this error.

Always On VPN and Windows Server 2019 Network Policy Server Bug
In addition, an event ID 20227 from the RasClient will be recorded in the application event log with the following error message.

The user [username] dialed a connection named [connection name] which has failed. The error code returned on failure is 812.

Always On VPN and Windows Server 2019 Network Policy Server Bug

Common Causes

Always On VPN error code 812 indicates an authentication policy mismatch between the client and the server. This often occurs when, for example, the server is configured to use Protected Extensible Authentication Protocol (PEAP), but the client is configured to use Microsoft CHAP Version 2 (MS-CHAP v2).

Troubleshooting

Carefully review the authentication policy on both the client and server to ensure they match. Next, enable firewall logging on the NPS server to log both allowed and dropped packets. Attempt another VPN connection and observe the firewall logs. In this example the firewall is dropping packets inbound on UDP port 1812.

Always On VPN and Windows Server 2019 Network Policy Server Bug

Interestingly, the default Windows firewall rule allowing inbound UDP port 1812 is enabled and set to allow for all profiles.

Always On VPN and Windows Server 2019 Network Policy Server Bug

Windows Server 2019 Bug

It appears that Microsoft’s recently released Windows Server 2019 has a bug that prevents NPS from working correctly out of the box. Specifically, it looks like the default Windows firewall rules to allow inbound UDP port 1812 (RADIUS authentication) and inbound UDP port 1813 (RADIUS accounting) do not work.

Resolution

To resolve this issue, open an elevated command window and enter the following command.

sc sidtype IAS unrestricted

Once complete, restart the server and the default Windows Firewall rules for NPS traffic will work correctly.

Additional Information

Windows 10 Always On VPN NPS Load Balancing Strategies

Always On VPN Certificate Requirements for IKEv2

Always On VPN Certificate Requirements for IKEv2Internet Key Exchange version 2 (IKEv2) is one of the VPN protocols supported for Windows 10 Always On VPN deployments. When the VPN server is Windows Server 2016 with the Routing and Remote Access Service (RRAS) role configured, a computer certificate must first be installed on the server to support IKEv2. There are some unique requirements for this certificate, specifically regarding the subject name and Enhanced Key Usage (EKU) configuration. In addition, some deployment scenarios may require a certificate to be provisioned to the client to support IKEv2 VPN connections.

Server Certificate

The IKEv2 certificate on the VPN server must be issued by the organization’s internal private certification authority (CA). It must be installed in the Local Computer/Personal certificate store on the VPN server. The subject name on the certificate must match the public hostname used by VPN clients to connect to the server, not the server’s hostname. For example, if the VPN server’s hostname is VPN1 and the public FQDN is vpn.example.net, the subject field of the certificate must include vpn.example.net, as shown here.

Always On VPN Certificate Requirements for IKEv2

In addition, the certificate must include the Server Authentication EKU (1.3.6.1.5.5.7.3.1). Optionally, but recommended, the certificate should also include the IP security IKE intermediate EKU (1.3.6.1.5.5.8.2.2).

Always On VPN Certificate Requirements for IKEv2

Client Certificate

Client certificate requirements vary depending on the type of VPN tunnel and authentication method being used.

User Tunnel

No certificates are required on the client to support IKEv2 when using MSCHAPv2, EAP-MSCHAPv2, or Protected EAP (PEAP) with MSCHAPv2. However, if the option to verify the server’s identity by validating the certificate is selected when using PEAP, the client must have the certificates for the root CA and any subordinate CAs installed in its Trusted Root Certification and Intermediate Certificate Authorities certificate stores, respectively.

User Tunnel with Certificate Authentication

Using certificate authentication for the user tunnel is the recommended best practice for Always On VPN deployments. A client certificate must be installed in the Current User/Personal store to support PEAP authentication with smart card or certificate authentication. The certificate must include the Client Authentication EKU (1.3.6.1.5.5.7.3.2).

Always On VPN Certificate Requirements for IKEv2

Device Tunnel

A computer certificate must be installed in the Local Computer/Personal certificate store to support IKEv2 machine certificate authentication and the Always On VPN device tunnel. The certificate must include the Client Authentication EKU (1.3.6.1.5.5.7.3.2).

Always On VPN Certificate Requirements for IKEv2

More information about configuring the Always On VPN device tunnel can be found here.

Additional Information

Always On VPN with Trusted Platform Module (TPM) Certificates

Always On VPN Protocol Recommendations for Windows Server 2016 RRAS

Always On VPN and Windows Server RRAS

Always On VPN Training

What is the Difference Between DirectAccess and Always On VPN?

Always On VPN Device Tunnel Configuration Guidance Now AvailableDirectAccess has been around for many years, and with Microsoft now moving in the direction of Always On VPN, I’m often asked “What’s the difference between DirectAccess and Always On VPN?” Fundamentally they both provide seamless and transparent, always on remote access. However, Always On VPN has a number of advantages over DirectAccess in terms of security, authentication and management, performance, and supportability.

Security

DirectAccess provides full network connectivity when a client is connected remotely. It lacks any native features to control access on a granular basis. It is possible to restrict access to internal resources by placing a firewall between the DirectAccess server and the LAN, but the policy would apply to all connected clients.

Windows 10 Always On VPN includes support for granular traffic filtering. Where DirectAccess provides access to all internal resources when connected, Always On VPN allows administrators to restrict client access to internal resources in a variety of ways. In addition, traffic filter policies can be applied on a per-user or group basis. For example, users in accounting can be granted access only to their department servers. The same could be done for HR, finance, IT, and others.

Authentication and Management

DirectAccess includes support for strong user authentication with smart cards and one-time password (OTP) solutions. However, there is no provision to grant access based on device configuration or health, as that feature was removed in Windows Server 2016 and Windows 10. In addition, DirectAccess requires that clients and servers be joined to a domain, as all configuration settings are managed using Active Directory group policy.

Windows 10 Always On VPN includes support for modern authentication and management, which results in better overall security. Always On VPN clients can be joined to an Azure Active Directory and conditional access can also be enabled. Modern authentication support using Azure MFA and Windows Hello for Business is also supported. Always On VPN is managed using Mobile Device Management (MDM) solutions such as Microsoft Intune.

Performance

DirectAccess uses IPsec with IPv6, which must be encapsulated in TLS to be routed over the public IPv4 Internet. IPv6 traffic is then translated to IPv4 on the DirectAccess server. DirectAccess performance is often acceptable when clients have reliable, high quality Internet connections. However, if connection quality is fair to poor, the high protocol overhead of DirectAccess with its multiple layers of encapsulation and translation often yields poor performance.

The protocol of choice for Windows 10 Always On VPN deployments is IKEv2. It offers the best security and performance when compared to TLS-based protocols. In addition, Always On VPN does not rely exclusively on IPv6 as DirectAccess does. This reduces the many layers of encapsulation and eliminates the need for complex IPv6 transition and translation technologies, further improving performance over DirectAccess.

Supportability

DirectAccess is a Microsoft-proprietary solution that must be deployed using Windows Server and Active Directory. It also requires a Network Location Server (NLS) for clients to determine if they are inside or outside the network. NLS availability is crucial and ensuring that it is always reachable by internal clients can pose challenges, especially in very large organizations.

Windows 10 Always On VPN supporting infrastructure is much less complex than DirectAccess. There’s no requirement for a NLS, which means fewer servers to provision, manage, and monitor. In addition, Always On VPN is completely infrastructure independent and can be deployed using third-party VPN servers such as Cisco, Checkpoint, SonicWALL, Palo Alto, and more.

Summary

Windows 10 Always On VPN is the way of the future. It provides better overall security than DirectAccess, it performs better, and it is easier to manage and support.

Here’s a quick summary of some important aspects of VPN, DirectAccess, and Windows 10 Always On VPN.

Traditional VPN DirectAccess Always On VPN
Seamless and Transparent No Yes Yes
Automatic Connection Options None Always on Always on, app triggered
Protocol Support IPv4 and IPv6 IPv6 Only IPv4 and IPv6
Traffic Filtering No No Yes
Azure AD Integration No No Yes
Modern Management Yes No (group policy only) Yes (MDM)
Clients must be domain-joined? No Yes No
Requires Microsoft Infrastructure No Yes No
Supports Windows 7 Yes Yes Windows 10 only

Always On VPN Hands-On Training

If you are interested in learning more about Windows 10 Always On VPN, consider registering for one of my hands-on training classes. More details here.

Additional Resources

Always On VPN and the Future of Microsoft DirectAccess

5 Important Things DirectAccess Administrators Should Know about Windows 10 Always On VPN

3 Important Advantages of Windows 10 Always On VPN over DirectAccess

NetMotion Mobility Device Tunnel Configuration

NetMotion Mobility Device Tunnel ConfigurationIn its default configuration, NetMotion Mobility connections are established at the user level. In most cases this level of access is sufficient, but there are some common uses cases that require VPN connectivity before the user logs on. Examples include provisioning a new device to a user who has never logged on before, or to allow support engineers to connect to a remote device without requiring a user to log in first.

Infrastructure Requirements

To support NetMotion Mobility’s “unattended mode” (device tunnel) it will be necessary to deploy a Windows Server 2016 (or 2012R2) Network Policy Server (NPS). In addition, an internal private certification authority (CA) will be required to issue certificates to the NPS server and all NetMotion Mobility client computers.

Client Certificate Requirements

A certificate with the Client Authentication Enhanced Key Usage (EKU) must be provisioned to the local computer certificate store on all NetMotion Mobility clients that require a device tunnel (figure 1). The subject name on the certificate must match the fully qualified domain name of the client computer (figure 2). It is recommended that certificate auto enrollment be used to streamline the provisioning process.

NetMotion Mobility Device Tunnel Configuration

Figure 1. Computer certificate with Client Authentication EKU.

NetMotion Mobility Device Tunnel Configuration

Figure 2. Computer certificate with subject name matching the client computer’s hostname.

NPS Server Certificate Requirements

A certificate with the Server Authentication EKU must be provisioned to the local computer certificate store on the NPS server (figure 3). The subject name on the certificate must match the fully qualified domain name of the NPS server (figure 4).

NetMotion Mobility Device Tunnel Configuration

Figure 3. Computer certificate with Server Authentication EKU.

NetMotion Mobility Device Tunnel Configuration

Figure 4. Computer certificate with subject name matching the NPS server’s hostname.

NPS Server Configuration

Next install the NPS server role by running the following PowerShell command.

Install-WindowsFeature NPAS -IncludeMamagementTools

Once complete, open the NPS server management console and perform the following steps.

Note: Below is a highly simplified NPS configuration designed for a single use case. It is provided for demonstration purposes only. The NPS server may be used by more than one network access server (NAS) so the example policies included below may not work in every deployment.

  1. Expand RADIUS Clients and Servers.
  2. Right-click RADIUS clients and choose New.
  3. Select the option to Enable this RADIUS client.
  4. Enter a friendly name.
  5. Enter the IP address or hostname of the NetMotion gateway server.
  6. Click Verify to validate the hostname or IP address.
  7. Select Manual to enter a shared secret, or select Generate to create one automatically.
  8. Copy the shared secret as it will be required when configure the NetMotion Mobility gateway server later.
  9. Click OK.
    NetMotion Mobility Device Tunnel Configuration
  10. Expand Policies.
  11. Right-click Network Policies and choose New.
  12. Enter a descriptive name for the new policy.
  13. Select Type of network access server and choose Unspecified.
  14. Click Next.
    NetMotion Mobility Device Tunnel Configuration
  15. Click Add.
  16. Select Client IPv4 Address.
  17. Click Add.
  18. Enter the internal IPv4 address of the NetMotion Mobility gateway server.
  19. Click OK.
  20. Click Next.
    NetMotion Mobility Device Tunnel Configuration
  21. Select Access granted.
  22. Click Next.
    NetMotion Mobility Device Tunnel Configuration
  23. Click Add.
  24. Choose Microsoft: Protected EAP (PEAP).
  25. Click OK.
  26. Select Microsoft: Protected EAP (PEAP).
  27. Click Edit.
  28. Choose the appropriate certificate in the Certificate issued to drop down list.
  29. Select Secure password (EAP-MSCHAP v2).
  30. Click Remove.
  31. Click Add.
  32. Choose Smart Card or other certificate.
  33. Click OK.
  34. Select Smart Card or other certificate.
  35. Click Edit.
  36. Choose the appropriate certificate in the Certificate issued to drop down list.
  37. Click OK.
    NetMotion Mobility Device Tunnel Configuration
  38. Uncheck all options beneath Less secure authentication methods.
  39. Click Next three times.
  40. Click Finish.
    NetMotion Mobility Device Tunnel Configuration

Mobility Server Configuration

Open the NetMotion Mobility management console and perform the following steps.

  1. In the drop-down menu click Configure.
  2. Click Authentication Settings.
  3. Click New.
  4. Enter a descriptive name for the new authentication profile.
  5. Click OK.
  6. Expand Authentication.
  7. Select Mode.
  8. Select Unattended Mode Authentication Setting Override.
  9. From the Authentication mode drop-down box choose Unattended.
  10. Click Apply.
    NetMotion Mobility Device Tunnel Configuration
  11. Expand RADIUS: Device Authentication.
  12. Select Servers.
  13. Select [Profile Name] Authentication Setting Override.
  14. Click Add.
  15. Enter the IP address of the NPS server.
  16. Enter the port (default is 1812).
  17. Enter the shared secret.
  18. Click OK.
    NetMotion Mobility Device Tunnel Configuration
  19. In the drop-down menu click Configure.
  20. Click Client Settings.
  21. Expand Device Settings.
  22. Select the device group to enable unattended mode for.
  23. Expand Authentication.
  24. Select Settings Profile.
  25. Select [Device Group Name] Group Settings Override.
  26. In the Profile drop-down menu choose the authentication profile created previously.
  27. Click Apply.
    NetMotion Mobility Device Tunnel Configuration

Validation Testing

If everything is configured correctly, the NetMotion Mobility client will now indicate that the user and the device have been authenticated.

NetMotion Mobility Device Tunnel Configuration

Summary

Enabling unattended mode with NetMotion Mobility provides feature parity with DirectAccess machine tunnel and Windows 10 Always On VPN device tunnel. It ensures that domain connectivity is available before the user logs on. This allows users to log on remotely without cached credentials. It also allows administrators to continue working seamlessly on a remote computer after a reboot without having a user present to log on.

Additional Resources

NetMotion Mobility as an Alternative to DirectAccess

 

DirectAccess and Azure Multifactor Authentication

Introduction

DirectAccess and Azure Multifactor AuthenticationDirectAccess can be configured to enforce strong user authentication using smart cards or one-time passwords (OTP). This provides the highest level of assurance for remote users connecting to the internal network via DirectAccess. OTP solutions are commonly used because they require less administration and are more cost effective than typical smart card implementations. Most OTP solutions will integrate with DirectAccess as long as they support Remote Access Dial-In User Service (RADIUS).

DirectAccess and Azure Multifactor Authentication

Azure Authentication-as-a-Service

Azure Multifactor Authentication (MFA) is a popular OTP provider used to enable strong user authentication for a variety of platforms, including web sites and client-based VPN. Unfortunately, it doesn’t work with DirectAccess. This is because Azure MFA uses a challenge/response method for which DirectAccess does not support. To use OTP with DirectAccess, the user must be able to enter their PIN and OTP immediately when prompted. There is no provision to begin the authentication process and wait for a response from the OTP provider.

PointSharp ID Multifactor Authentication

An excellent alternative to Azure MFA is PointSharp ID. PointSharp is a powerful OTP platform that integrates easily with DirectAccess. It is also very flexible, allowing for more complex authentication schemes for those workloads that support it, such as Exchange and Skype for Business.

DirectAccess and Azure Multifactor AuthenticationEvaluate PointSharp

You can download a fully-functional trial version of PointSharp ID here (registration required). The PointSharp ID and DirectAccess integration guide with detailed step-by-step instructions for configuring DirectAccess and PointSharp ID can be downloaded here. Consulting services are also available to assist with integrating PointSharp ID with DirectAccess, VPN, Exchange, Skype for Business, Remote Desktop Services, or any other solution that requires strong user authentication. More information about consulting services can be found here.

Additional Information

PointSharp Multifactor Authentication
Configure DirectAccess with OTP Authentication
DirectAccess Consulting Services
Implementing DirectAccess with Windows Server 2016

%d bloggers like this: