Always On VPN SSTP Connects then Disconnects

Always On VPN SSTP Connects then DisconnectsWhen Always On VPN clients are configured to use the Secure Socket Tunneling Protocol (SSTP) with Windows Server Routing and Remote Access Service (RRAS), administrators may encounter a scenario in which a client can establish a VPN connection using SSTP successfully, but is then disconnected immediately. The system event log contains an entry with Event ID 6 from the RasSstp source that includes the following error message.

“The SSTP-based VPN connection to the remote access server was terminated because of a security check failure. Security settings on the remote access server do not match settings on this computer. Contact the system administrator of the remote access server and relay the following information.”

Always On VPN Connect and Disconnect with SSTP

Common Causes

The two most common causes of this issue are when SSTP is configured for SSL offload, and when a VPN client is on a network where SSL inspection is taking place.

SSTP Offload

The most common cause of this issue is when SSL offload is configured for SSTP on an external load balancer or application delivery controller (ADC). To prevent interception from a Man-in-the-Middle attack, the VPN client sends the certificate hash of the SSL certificate used when the VPN connection was established. If this information does not match what is configured on the RRAS server, the connection is assumed to be compromised and the connection is immediately dropped.

SSL Inspection

Another scenario where this issue may occur is when a VPN client is behind a network device configured to perform SSL deep-packet inspection (DPI). SSTP VPN clients will be unable to connect to the VPN server in this scenario.

Resolution

When offloading SSL to another device, the RRAS server must be configured to know which SSL certificate is being presented to remote clients. This information is stored in the following registry key.

HKLM:\SYSTEM\CurrentControlSet\Services\SstpSvc\Parameters\SHA256CertificateHash

However, this registry entry requires a binary value, which makes it a challenge to configure manually. To resolve this problem, it is recommended that the same SSL certificate installed on the load balancer/ADC also be installed on the VPN server (even though SSL will be offloaded). To do this, first import the SSL certificate and private key in to the Local Computer certificate store, then open the RRAS management console and perform the following steps.

  1. Right-click the VPN server and choose Properties.
  2. Select the Security tab.
  3. Uncheck Use HTTP in the SSL Certificate Binding section.
  4. Select the appropriate SSL certificate from the Certificate drop-down list (click View to verify).
  5. Click Apply.

This will add the correct SSL certificate information to the registry. Next, re-enable HTTP for SSL offload by performing the following steps.

  1. Check Use HTTP in the SSL Certificate Binding section.
  2. Click Apply.

PowerShell Configuration

If the SSL certificate cannot be installed on the VPN server, or to automate this configuration across multiple servers remotely, download and run the Enable-SstpOffload PowerShell script from my GitHub repository here and run the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

For example…

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Additional Information

Windows 10 Always On VPN Load Balancing and SSL Offload

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN Protocol Recommendations for Windows Server RRAS

Always On VPN SSTP Load Balancing and SSL Offload

SSL Certificate Considerations for DirectAccess IP-HTTPSThe Windows Server Routing and Remote Access Service (RRAS) is a popular choice for a VPN server to support Windows 10 Always On VPN deployments. One significant advantage RRAS provides is support for the Secure Socket Tunneling Protocol (SSTP). SSTP is a Microsoft proprietary VPN protocol that uses Transport Layer Security (TLS) to ensure privacy between the VPN client and server. The advantage to using a TLS-based transport is that it leverages the standard HTTPS TCP port 443, making it firewall friendly and ensuring ubiquitous remote access even behind highly restrictive firewalls.

Load Balancing SSTP

Load balancing SSTP can be accomplished in much the same way as a load balancing a common web server using HTTPS. The external load balancer is configured with a virtual IP address (VIP) and each VPN server is configured behind it. Session persistence should be configured to use SSL with source IP address persistence as a fallback.

SSL Offload for SSTP

In most cases, simply forwarding encrypted SSTP connections to the VPN server will be sufficient. However, offloading SSL/TLS processing to an Application Delivery Controller (ADC) or load balancer can be beneficial for the following reasons.

Resource Utilization

Enabling TLS offload for SSTP VPN connections can reduce CPU and memory utilization on the VPN server. However, this will likely only be necessary for very busy servers supporting many concurrent connections.

Security

In some cases, the administrator may not be able to install the public SSL certificate on the VPN server. For example, a security policy may exist that restricts SSL certificate installation to dedicated security devices using a Hardware Security Module (HSM). In some cases, it may be desirable to restrict access to high value certificates such as wildcard certificates.

Certificate Management

Often SSL certificates are implemented on load balancers to reduce certificate sprawl and to ease the management and administration burden in the enterprise. By having all enterprise certificates installed only on dedicated security devices, administrators can more effectively monitor and manage SSL certificate lifecycles.

SSTP Configuration for TLS Offload

Configuration changes must be made on the load balancer and the RRAS server to support TLS offload for SSTP.

Load Balancer

Install the public SSL certificate on the load balancer and configure it for TLS termination. Configure the load balancer to then use HTTP for backend server connections. Consult the load balancer vendor’s documentation for configuration guidance.

RRAS Server

If the public SSL certificate is installed on the VPN server, enabling TLS offload for SSTP is simple and straightforward. Follow the steps below to enable TLS offload for SSTP VPN connections.

  1. Open the RRAS management console (rrasmgmt.msc).
  2. Right-click the VPN server and choose Properties.
  3. Select the Security tab.
  4. Check Use HTTP in the SSL Certificate Binding section.
  5. Click Ok and then Yes to restart the Remote Access service.

Always On VPN SSTP Load Balancing and SSL Offload

If the public SSL certificate is not or cannot be installed on the RRAS server, additional configuration will be required. Specifically, SSL offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be downloaded here.

Once the script has been downloaded and imported, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

For example…

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Additional Information

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN IKEv2 and SSTP Fallback

Windows 10 Always On VPN Hands-On Training Classes for 2019

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load BalancingLoad balancing Windows Server Network Policy Servers (NPS) is straightforward in most deployment scenarios. Most VPN servers, including Windows Server Routing and Remote Access Service (RRAS) servers allow the administrator to configure multiple NPS servers for redundancy and scalability. In addition, most solutions support weighted distribution, allowing administrators to distribute requests evenly between multiple NPS servers (round robin load balancing) or to distribute them in order of priority (active/passive failover).

The Case for NPS Load Balancing

Placing NPS servers behind a dedicated network load balancing appliance is not typically required. However, there are some deployment scenarios where doing so can provide important advantages.

Deployment Flexibility

Having NPS servers fronted by a network load balancer allows the administrator to configure a single, virtual IP address and hostname for the NPS service. This provides deployment flexibility by allowing administrators to add or remove NPS servers without having to reconfigure VPN servers, network firewalls, or VPN clients. This can be beneficial when deploying Windows updates, migrating NPS servers to different subnets, adding more NPS servers to increase capacity, or performing rolling upgrades of NPS servers.

Traffic Shaping

Dedicated network load balancers allow for more granular control and of NPS traffic. For example, NPS routing decisions can be based on real server availability, ensuring that authentication requests are never sent to an NPS server that is offline or unavailable for any reason. In addition, NPS traffic can be distributed based on server load, ensuring the most efficient use of NPS resources. Finally, most load balancers also support fixed or weighted distribution, enabling active/passive failover scenarios if required.

Traffic Visibility

Using a network load balancer for NPS also provides better visibility for NPS authentication traffic. Most load balancers feature robust graphical displays of network utilization for the virtual server/service as well as backend servers. This information can be used to ensure enough capacity is provided and to monitor and plan for additional resources when network traffic increases.

Configuration

Before placing NPS servers behind a network load balancer, the NPS server certificate must be specially prepared to support this unique deployment scenario. Specifically, the NPS server certificate must be configured with the Subject name of the cluster, and the Subject Alternative Name field must include both the cluster name and the individual server’s hostname.

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load Balancing

Create Certificate Template

Perform the following steps to create a certificate template in AD CS to support NPS load balancing.

  1. Open the Certificate Templates management console (certtmpl.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Right-click the RAS and IAS Servers default certificate template and choose Duplicate.
  3. Select the Compatibility tab.
    1. Select Windows Server 2008 or a later version from the Certification Authority drop-down list.
    2. Select Windows Vista/Server 2008 or a later version from the Certificate recipient drop-down list.
  4. Select the General tab.
    1. Enter a descriptive name in the Template display name field.
    2. Choose an appropriate Validity period and Renewal period.
    3. Do NOT select the option to Publish certificate in Active Directory.
  5. Select the Cryptography tab.
    1. Chose Key Storage Provider from the Provider Category drop-down list.
    2. Enter 2048 in the Minimum key size field.
    3. Select SHA256 from the Request hash drop-down list.
  6. Select the Subject Name tab.
    1. Select the option to Supply in the request.
  7. Select the Security tab.
    1. Highlight RAS and IAS Servers and click Remove.
    2. Click Add.
    3. Enter the security group name containing all NPS servers.
    4. Check the Read and Enroll boxes in the Allow column in the Permissions for [group name] field.
  8. Click Ok.

Perform the steps below to publish the new certificate template in AD CS.

  1. Open the Certification Authority management console (certsrv.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Expand Certification Authority (hostname).
  3. Right-click Certificate Templates and choose New and Certificate Template to Issue.
  4. Select the certificate template created previously.
  5. Click Ok.

Request Certificate on NPS Server

Perform the following steps to request a certificate for the NPS server.

  1. Open the Certificates management console (certlm.msc) on the NPS server.
  2. Expand the Personal folder.
  3. Right-click Certificates and choose All Tasks and Request New Certificate.
  4. Click Next.
  5. Click Next.
  6. Select the NPS server certificate template and click More information is required to enroll for this certificate link.
  7. Select the Subject tab.
    1.  Select Common name from the Type drop-down list in the Subject name section.
    2. Enter the cluster fully-qualified hostname (FQDN) in the Value field.
    3. Click Add.
    4. Select DNS from the Type drop-down list in the Alternative name section.
    5. Enter the cluster FQDN in the Value field.
    6. Click Add.
    7. Enter the NPS server’s FQDN in the Value field.
    8. Click Add.
      Always On VPN and Network Policy Server (NPS) Load Balancing
  8. Select the General tab.
    1. Enter a descriptive name in the Friendly name field.
  9. Click Ok.
  10. Click Enroll.

Load Balancer Configuration

Configure the load balancer to load balance UDP ports 1812 (authentication) and 1813 (accounting). Optionally, to ensure that authentication and accounting requests go to the same NPS server, enable source IP persistence according to the vendor’s guidance. For the KEMP LoadMaster load balancer, the feature is called “port following”. On the F5 BIG-IP it is called a “persistence profile”, and on the Citrix NetScaler it is called a “persistency group”.

Additional Information

Always On VPN IKEv2 Load Balancing with KEMP LoadMaster

Always On VPN Hands-On Training Classes in U.S. and Europe

Always On VPN and Third Party VPN Devices

Always On VPN and Third Party VPN DevicesOne of the most important advantages Windows 10 Always On VPN has over DirectAccess is infrastructure independence. That is, Always On VPN does not rely exclusively on a Windows Server infrastructure to support Always On VPN connections. Always On VPN will work with many third-party firewalls and VPN devices, as long as they meet some basic requirements.

Advantages

Third-party firewalls or VPN devices offer some important advantages over Windows Servers running the Routing and Remote Access Services (RRAS), both in terms of security and performance.

Security

Dedicated security devices (physical or virtual) provide better security than a common Windows server. They commonly run specialized, security-hardened operating systems that are highly secure and resistant to attack. In addition, these solutions typically allow the administrator to define policy to restrict access to internal resources and do so in a centralized way. This is often easier to implement and manage than using traffic filters on the client side. They often include advanced security features such as URL filtering and malware inspection to better protect remote clients. Some solutions include Hardware Security Module (HSM) integration to further enhance security.

Performance

Purpose-built solutions often provide better throughput and performance than do Windows Servers by virtue of their proprietary operating systems. This allows for better network throughput and the ability to support many more connections per device.

Disadvantages

The main drawbacks for using a third-party device are cost and administrative overhead. Third-party solutions must be acquired, for which there is typically a non-trivial cost associated. They often need additional per-user licensing. In addition, many of these solutions require specialized skill sets to implement, manage, and support which could further increase the overall cost of the solution.

Interoperability Requirements

Any firewall or VPN device can be used for Always On VPN as long as they support the Internet Key Exchange version 2 (IKEv2) VPN protocol for remote access connections. Most modern firewalls today support IKEv2, but some (such as the Sophos XG firewall) do not. Check with your vendor to validate support.

Native Client

If the firewall or VPN device supports IKEv2 for remote access connections, the native Windows VPN provider can be used to establish an Always On VPN connection. The native provider is used when the Always On VPN ProfileXML is configured using the NativeProfile element.

Plug-In VPN Client

One crucial drawback to using IKEv2 is that it is commonly blocked by firewalls. Many third-party VPN vendors offer a plug-in client that enables support for TLS-based transport, which is more firewall friendly than IKEv2. Plug-in VPN providers are available in the Microsoft store.

Below is a current list of available third-party VPN plug-in providers for Windows 10. (Updated April 5 to now include Cisco AnyConnect!)

  • Check Point Capsule
  • Cisco AnyConnect
  • F5 Access
  • Fortinet Forticlient
  • Palo Alto GlobalProtect
  • Pulse Secure
  • SonicWall Mobile Connect

Always On VPN and Third-Party VPN Devices

Note: Win32 VPN client applications from third-party vendors are not supported with Windows 10 Always On VPN.

Additional Information

What is the Difference Between DirectAccess and Always On VPN?

5 Things DirectAccess Administrators Should Know about Always On VPN

3 Important Advantages of Always On VPN over DirectAccess

Always On VPN IKEv2 Security Configuration

Always On VPN IKEv2 Security ConfigurationWhen deploying Windows 10 Always On VPN, many administrators choose the Internet Key Exchange version 2 (IKEv2) protocol to provide the highest level of security and protection for remote connections. However, many do not realize the default security parameters for IKEv2 negotiated between a Windows Server running the Routing and Remote Access Service (RRAS) and a Windows 10 VPN client are far less than ideal from a security perspective. Additional configuration on both the server and the client will be required to ensure adequate security and protection for IKEv2 VPN connections.

Windows 10 and RRAS IKEv2 Defaults

In their default configuration, a Windows 10 client connecting to a Windows Server running RRAS will negotiate an IKEv2 VPN connection using the following IPsec security parameters.

  • Encryption: 3DES
  • Authentication/Integrity: SHA-1
  • Key Size: DH Group 2 (1024 bit)

This information can be obtained by opening an elevated PowerShell command window and running the following command.

Get-NetIPsecMainModeSA | Select-Object -First 1

Always On VPN IKEv2 Security Configuration

This can also be confirmed by viewing a network trace as shown here.

Always On VPN IKEv2 Security Configuration

These IPsec security parameters might have been acceptable in the 90’s, but they certainly are not today. 🙂

Improving IKEv2 Security

To provide a baseline level of protection to meet today’s requirements for security and privacy for IKEv2 VPN connections, the following are the minimum recommended IPsec security parameters.

  • Encryption: AES128
  • Authentication/Integrity: SHA-256
  • Key Size: DH Group 14 (2048 bit)

RRAS Custom IPsec Policy

To implement these recommended security baselines for IKEv2 on a Windows Server running RRAS it will be necessary to define a custom IPsec security policy. To do this, open an elevated PowerShell command window and run the following commands on each RRAS server.

Set-VpnServerConfiguration -CustomPolicy -AuthenticationTransformConstants SHA256128 -CipherTransformConstants AES128 -DHGroup Group14 -EncryptionMethod AES128 -IntegrityCheckMethod SHA256 -PFSgroup PFS2048 -SADataSizeForRenegotiationKilobytes 102400

Restart the Remote Access Management service for the changes to take effect.

Restart-Service RemoteAccess -PassThru

Always On VPN IKEv2 Security Configuration

Windows 10 Client Settings

The IPsec policy must match on both the server and the client for an IKEv2 VPN connection to be successful. Unfortunately, none of the IKEv2 IPsec security association parameters proposed by default on Windows 10 clients use 2048-bit keys (DH Group 14), so it will be necessary to define a custom IPsec security policy on the client to match the settings configured on the server.

To configure a matching IPsec security policy on an individual Windows 10 VPN client, open an elevated PowerShell command window and run the following command.

$connection = “[connection name]”
Set-VpnConnectionIPsecConfiguration -ConnectionName $connection -AuthenticationTransformConstants SHA256128 -CipherTransformConstants AES128 -DHGroup Group14 -EncryptionMethod AES128 -IntegrityCheckMethod SHA256 -PFSgroup PFS2048 -Force

Always On VPN IKEv2 Security Configuration

Restore Defaults

In the process of testing it may be necessary to restore the default IKEv2 configuration on both the client and the server. This can be accomplished by running the following PowerShell commands.

Server – Set-VpnServerConfiguration -RevertToDefault

Client – Set-VpnConnectionIPsecConfiguration -ConnectionName [connection_name] -RevertToDefault -Force

Always On VPN XML Settings

To implement a custom IPsec policy using the minimum recommended security settings for an Always On VPN connection using IKEv2, add the following settings to your ProfileXML.

<VPNProfile>
 <NativeProfile>
  <CryptographySuite>
   <AuthenticationTransformConstants>SHA256128</AuthenticationTransformConstants>
   <CipherTransformConstants>AES128</CipherTransformConstants>
   <EncryptionMethod>AES128</EncryptionMethod>
   <IntegrityCheckMethod>SHA256</IntegrityCheckMethod>
   <DHGroup>Group14</DHGroup>
   <PfsGroup>PFS2048</PfsGroup>
  </CryptographySuite>
 </NativeProfile>
</VPNProfile>

Why Not AES 256?

In the examples above you’ll notice that I’ve chosen to use AES128 and not AES256. This is by design, as AES256 does not provide any practical additional security in most use cases. Details here.

Enhanced Security and Performance

To further improve security and performance for IKEv2, consider implementing Elliptic Curve Cryptography (EC) certificates and using Galois Counter Mode (GCM) cipher suites such as GCMAES128 for authentication and encryption.

Additional Information

Always On VPN Certificate Requirements for IKEv2

Always On VPN IKEv2 Connection Failure Error Code 800

Always On VPN IKEv2 Load Balancing with the KEMP LoadMaster Load Balancer

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

After installing and configuring DirectAccess in Windows Server 2019 you may encounter an error message indicating that IP-HTTPS is not working properly. Looking at the Operations Status overview in the Dashboard of the Remote Access Management console shows that the IP-HTTPS interface is in error.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

IP-HTTPS Route Error

Viewing the detailed Operations Status shows the following error message.

Error: The IP-HTTPS route does not have published property enabled.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Missing Route

Looking at the routing table on the DirectAccess server reveals that a route to the client IPv6 prefix is indeed missing.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Resolution

To resolve this error message, add the client IPv6 route to the DirectAccess server’s routing table and publish it. This is accomplished by running the following PowerShell commands on the DirectAccess server.

$IPv6prefix = (Get-RemoteAccess).ClientIPv6Prefix
New-NetRoute -AddressFamily IPv6 -DestinationPrefix $IPv6prefix -InterfaceAlias “Microsoft IP-HTTPS Platform Interface” -Publish Yes

Next, restart the Remote Access Management service (RaMgmtSvc) using the following PowerShell command.

Restart-Service RaMgmtSvc -PassThru

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Once complete, refresh the management console and the IP-HTTPS error message should be resolved and the operations status should state that it is now working properly.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

 

Additional Information

SSL Certificate Conisderations for DirectAccess IP-HTTPS

DirectAccess Expire IP-HTTPS Certificate and Error 0x800b0101

Always On VPN SSL Certificate Requirements for SSTP

Always On VPN Certificate Requirements for SSTPThe Windows Server 2016 Routing and Remote Access Service (RRAS) is commonly deployed as a VPN server for Windows 10 Always On VPN deployments. Using RRAS, Always On VPN administrators can take advantage of Microsoft’s proprietary Secure Socket Tunneling Protocol (SSTP) VPN protocol. SSTP is a Transport Layer Security (TLS) based VPN protocol that uses HTTPS over the standard TCP port 443 to encapsulate and encrypt communication between the Always On VPN client and the RRAS VPN server. SSTP is a firewall-friendly protocol that ensures ubiquitous remote network connectivity. Although IKEv2 is the protocol of choice when the highest level of security is required for VPN connections, SSTP can still provide very good security when implementation best practices are followed.

SSTP Certificate

Since SSTP uses HTTPS for transport, a common SSL certificate must be installed in the Local Computer/Personal/Certificates store on the RRAS VPN server. The certificate must include the Server Authentication Enhanced Key Usage (EKU) at a minimum. Often SSL certificates include both the Server Authentication and Client Authentication EKUs, but the Client Authentication EKU is not strictly required. The subject name on the certificate, or at least one of the Subject Alternative Name entries, must match the public hostname used by VPN clients to connect to the VPN server. Multi-SAN (sometimes referred to as UC certificates) and wildcard certificates are supported.

Always On VPN Certificate Requirements for SSTP

Certification Authority

It is recommended that the SSL certificate used for SSTP be issued by a public Certification Authority (CA). Public CAs typically have their Certificate Revocation Lists (CRLs) hosted on robust, highly available infrastructure. This reduces the chance of failed VPN connection attempts caused by the CRL being offline or unreachable.

Using an SSL certificate issued by an internal, private CA is supported if the CRL for the internal PKI is publicly available.

Key Type

RSA is the most common key type used for SSL certificates. However, Elliptic Curve Cryptography (ECC) keys offer better security and performance, so it is recommended that the SSTP SSL certificate be created using an ECC key instead.

Always On VPN Certificate Requirements for SSTP

To use an ECC key, be sure to specify the use of a Cryptographic Next Generation (CNG) key and select the ECDSA_P256 Microsoft Software Key Storage Provider (CSP) (or greater) when creating the Certificate Signing Request (CSR) for the SSTP SSL certificate.

Always On VPN Certificate Requirements for SSTP

Most public CAs will support certificate signing using ECC and Elliptic Curve Digital Signature Algorithm (ECDSA). If yours does not, find a better CA. 😉

Forward Secrecy

Forward secrecy (sometimes referred to as perfect forward secrecy, or PFS) ensures that session keys can’t be compromised even if the server’s private key is compromised. Using forward secrecy for SSTP is crucial to ensuring the highest levels of security for VPN connections.

To enforce the use of forward secrecy, the TLS configuration on the VPN server should be prioritized to prefer cipher suites with Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) key exchange.

Authenticated Encryption

Authenticated encryption (AE) and authenticated encryption with associated data (AEAD) is a form of encryption that provides better data protection and integrity compared to older block or stream ciphers such as CBC or RC4.

To enforce the use of authenticated encryption, the TLS configuration on the VPN server should be prioritized to prefer cipher suites that support Galois/Counter Mode (GCM) block ciphers.

Important Note: In Windows Server 2016, GCM ciphers can be used with both RSA and ECC certificates. However, in Windows Server 2012 R2 GCM ciphers can only be used when an ECC certificate is used.

SSL Offload

Offloading SSL to a load balancer or application delivery controller (ADC) can be enabled to improve scalability and performance for SSTP VPN connections. I will cover SSL offload for SSTP in detail in a future post.

Summary

SSTP can provide good security for VPN connections when implementation and security best practices are followed. For optimum security, use an SSL certificate with an EC key and optimize the TLS configuration to use forward secrecy and authenticated cipher suites.

Additional Information

Always On VPN ECDSA SSL Certificate Request for SSTP

Always On VPN and Windows Server Routing and Remote Access Service (RRAS)

Always On VPN Protocol Recommendations for Windows Server RRAS

Always On VPN Certificate Requirements for IKEv2

3 Important Advantages of Always On VPN over DirectAccess

Microsoft SSTP Specification on MSDN

Deleting an Always On VPN Device Tunnel

Deleting an Always On VPN Device TunnelWindows 10 Always On VPN supports both a user tunnel for corporate network access, and a device tunnel typically used to provide pre-logon network connectivity and to support manage out scenarios. The process of testing Always On VPN is often an iterative one involving trial and error testing to fine tune the configuration parameters to achieve the best experience. As a part of this process it will often be necessary to delete a connection at some point. For the user tunnel the process is simple and straightforward. Simply disconnect the session and delete the connection in the UI.

Deleting an Always On VPN Device Tunnel

Deleting a device tunnel connection presents a unique challenge though. Specifically, there is no VPN connection in the UI to disconnect and remove. To delete an Always On VPN device tunnel, open an elevated PowerShell window and enter the following command.

Get-VpnConnection -AllUserConnection | Remove-VpnConnection -Force

If the device tunnel is connected when you try to remove it, you will receive the following error message.

The VPN connection [connection_name] cannot be removed from the global user connections. Cannot
delete a connection while it is connected.

Deleting an Always On VPN Device Tunnel

The device tunnel must first be disconnected to resolve this issue. Enter the following command to disconnect the device tunnel.

rasdial.exe [connection_name] /disconnect

Remove the device tunnel connection using PowerShell once complete.

Deleting an Always On VPN Device Tunnel
Additional Resources

Windows 10 Always On VPN Device Tunnel Step-by-Step Configuration using PowerShell

What’s The Difference Between DirectAccess and Always On VPN?

Windows 10 Always On VPN Recommendations for Windows Server 2016 Routing and Remote Access Service (RRAS)

Windows 10 Always On VPN Hands-On Training

Deploying NetMotion Mobility in Azure

NetMotion MobilityOne of the many advantages NetMotion Mobility offers is that it requires no proprietary hardware to deliver its advanced capabilities and performance. It is a software solution that can be installed on any physical or virtual Windows server. This provides great deployment flexibility by allowing administrators to deploy this remote access solution on their existing virtual infrastructure, which is much less costly than investing in dedicated hardware or virtual appliances.

Cloud Deployment

As customers begin moving their traditional on-premises infrastructure to the cloud, it’s good to know that NetMotion Mobility is fully supported in popular public cloud platforms such as Microsoft Azure. Installing and configuring Mobility on a server in Azure requires a few important changes to a standard Azure VM deployment however. Below is detailed guidance for installing and configuring NetMotion Mobility on a Windows Server 2016 virtual machine hosted in the Microsoft Azure public cloud.

Azure Networking Configuration

Before installing the NetMotion Mobility software, follow the steps below to configure the Azure VM with a static public IP address and enable IP forwarding on the internal network interface.

  1. In the Azure management portal, select the NetMotion Mobility virtual machine and click Networking.
  2. Click on the public-facing network interface.
  3. In the Settings section click IP configurations.
  4. In the IP configurations section click on the IP configuration for the network interface.
  5. In the Public IP address setting section click Enabled for the Public IP address.
  6. Click Configure required settings for the IP address.
  7. Click Create New.
  8. Enter a descriptive name and select Static as the assignment method.
    Deploying NetMotion Mobility in Azure
  9. Click OK
  10. Click Save.Deploying NetMotion Mobility in AzureNote: The process of saving the network interface configuration takes a few minutes. Be patient!
  11. Note the public IP address, as this will be used later during the Mobility configuration.
  12. Close the IP address configuration blade.
  13. In the IP forwarding settings section click Enabled for IP forwarding.Deploying NetMotion Mobility in Azure
  14. Click Save.

NetMotion Mobility Installation

Proceed with the installation of NetMotion Mobility. When prompted for the external address, enter the public IP address created previously.

Deploying NetMotion Mobility in Azure

Next choose the option to Use pool of virtual IP addresses. Click Add and enter the starting and ending IP addresses, subnet prefix length, and default gateway and click OK.

Deploying NetMotion Mobility in Azure

Complete the remaining NetMotion Mobility configuration as required.

Azure Routing Table

A user defined routing table must be configured to ensure that NetMotion Mobility client traffic is routed correctly in Azure. Follow the steps below to complete the configuration.

  1. In the Azure management portal click New.
  2. In the Search the Marketplace field enter route table.
  3. In the results section click Route table.
  4. Click Create.
  5. Enter a descriptive name and select a subscription, resource group, and location.
  6. Click Create.

Deploying NetMotion Mobility in Azure

Once the deployment has completed successfully, click Go to resource in the notifications list.

Deploying NetMotion Mobility in Azure

Follow the steps below to add a route to the route table.

  1. In the Settings sections click Routes.
  2. Click Add.
  3. Enter a descriptive name.
  4. In the Address prefix field enter the subnet used by mobility clients defined earlier.
  5. Select Virtual appliance as the Next hop type.
  6. Enter the IP address of the NetMotion Mobility server’s internal network interface.
  7. Click OK.Deploying NetMotion Mobility in Azure
  8. Click Subnets.
  9. Click Associate.
  10. Click Choose a virtual network and select the network where the NetMotion Mobility gateway resides.
  11. Click Choose a subnet and select the subnet where the NetMotion Mobility gateway’s internal network interface resides.
  12. Click OK.

Note: If clients connecting to the NetMotion Mobility server need to access resources on-premises via a site-to-site gateway, be sure to associate the route table with the Azure gateway subnet.

Azure Network Security Group

A network security group must be configured to allow inbound UDP port 5008 to allow external clients to reach the NetMotion Mobility gateway server. Follow the steps below to create and assign a network security group.

  1. In the Azure management portal click New.
  2. In the Search the Marketplace field enter network security group.
  3. In the results section click Network security group.
  4. Click Create.
  5. Enter a descriptive name and select a subscription, resource group, and location.
  6. Click Create.

Deploying NetMotion Mobility in Azure

Once the deployment has completed successfully, click Go to resource in the notifications list.

Deploying NetMotion Mobility in Azure

Follow the steps below to configure the network security group.

  1. In the Settings section click Inbound security rules.
  2. Click Add.
  3. Enter 5008 in the Destination port ranges field.
  4. Select UDP for the protocol.
  5. Select Allow for the action.
  6. Enter a descriptive name.
  7. Click OK.
    Deploying NetMotion Mobility in Azure
  8. Click Network Interfaces.
  9. Click Associate.
  10. Select the external network interface of the NetMotion Mobility gateway server.

Summary

After completing the steps above, install the client software and configure it to use the static public IP address created previously. Alternatively, configure a DNS record to point to the public IP address and specify the Fully Qualified Domain Name (FQDN) instead of the IP address itself.

Additional Resources

Enabling Secure Remote Administration for the NetMotion Mobility Console

NetMotion Mobility Device Tunnel Configuration

NetMotion Mobility as an Alternative to Microsoft DirectAccess

NetMotion Mobility and Microsoft DirectAccess Comparison Whitepaper

NetMotion and Microsoft DirectAccess On-Demand Webinar

What is the Difference Between DirectAccess and Always On VPN?

Always On VPN Device Tunnel Configuration Guidance Now AvailableDirectAccess has been around for many years, and with Microsoft now moving in the direction of Always On VPN, I’m often asked “What’s the difference between DirectAccess and Always On VPN?” Fundamentally they both provide seamless and transparent, always on remote access. However, Always On VPN has a number of advantages over DirectAccess in terms of security, authentication and management, performance, and supportability.

Security

DirectAccess provides full network connectivity when a client is connected remotely. It lacks any native features to control access on a granular basis. It is possible to restrict access to internal resources by placing a firewall between the DirectAccess server and the LAN, but the policy would apply to all connected clients.

Windows 10 Always On VPN includes support for granular traffic filtering. Where DirectAccess provides access to all internal resources when connected, Always On VPN allows administrators to restrict client access to internal resources in a variety of ways. In addition, traffic filter policies can be applied on a per-user or group basis. For example, users in accounting can be granted access only to their department servers. The same could be done for HR, finance, IT, and others.

Authentication and Management

DirectAccess includes support for strong user authentication with smart cards and one-time password (OTP) solutions. However, there is no provision to grant access based on device configuration or health, as that feature was removed in Windows Server 2016 and Windows 10. In addition, DirectAccess requires that clients and servers be joined to a domain, as all configuration settings are managed using Active Directory group policy.

Windows 10 Always On VPN includes support for modern authentication and management, which results in better overall security. Always On VPN clients can be joined to an Azure Active Directory and conditional access can also be enabled. Modern authentication support using Azure MFA and Windows Hello for Business is also supported. Always On VPN is managed using Mobile Device Management (MDM) solutions such as Microsoft Intune.

Performance

DirectAccess uses IPsec with IPv6, which must be encapsulated in TLS to be routed over the public IPv4 Internet. IPv6 traffic is then translated to IPv4 on the DirectAccess server. DirectAccess performance is often acceptable when clients have reliable, high quality Internet connections. However, if connection quality is fair to poor, the high protocol overhead of DirectAccess with its multiple layers of encapsulation and translation often yields poor performance.

The protocol of choice for Windows 10 Always On VPN deployments is IKEv2. It offers the best security and performance when compared to TLS-based protocols. In addition, Always On VPN does not rely exclusively on IPv6 as DirectAccess does. This reduces the many layers of encapsulation and eliminates the need for complex IPv6 transition and translation technologies, further improving performance over DirectAccess.

Supportability

DirectAccess is a Microsoft-proprietary solution that must be deployed using Windows Server and Active Directory. It also requires a Network Location Server (NLS) for clients to determine if they are inside or outside the network. NLS availability is crucial and ensuring that it is always reachable by internal clients can pose challenges, especially in very large organizations.

Windows 10 Always On VPN supporting infrastructure is much less complex than DirectAccess. There’s no requirement for a NLS, which means fewer servers to provision, manage, and monitor. In addition, Always On VPN is completely infrastructure independent and can be deployed using third-party VPN servers such as Cisco, Checkpoint, SonicWALL, Palo Alto, and more.

Summary

Windows 10 Always On VPN is the way of the future. It provides better overall security than DirectAccess, it performs better, and it is easier to manage and support.

Here’s a quick summary of some important aspects of VPN, DirectAccess, and Windows 10 Always On VPN.

Traditional VPN DirectAccess Always On VPN
Seamless and Transparent No Yes Yes
Automatic Connection Options None Always on Always on, app triggered
Protocol Support IPv4 and IPv6 IPv6 Only IPv4 and IPv6
Traffic Filtering No No Yes
Azure AD Integration No No Yes
Modern Management Yes No (group policy only) Yes (MDM)
Clients must be domain-joined? No Yes No
Requires Microsoft Infrastructure No Yes No
Supports Windows 7 Yes Yes Windows 10 only

Always On VPN Hands-On Training

If you are interested in learning more about Windows 10 Always On VPN, consider registering for one of my hands-on training classes. More details here.

Additional Resources

Always On VPN and the Future of Microsoft DirectAccess

5 Important Things DirectAccess Administrators Should Know about Windows 10 Always On VPN

3 Important Advantages of Windows 10 Always On VPN over DirectAccess

%d bloggers like this: