Denying Access to Always On VPN Users or Computers

Denying Access to Always On VPN Users or ComputersOnce Windows 10 Always On VPN has been deployed in production, it may be necessary at some point for administrators to deny access to individual users or computers. Commonly this occurs when an employee is terminated or leaves the company, or if a device is lost, stolen, or otherwise compromised. Typically, this means that user accounts and computer accounts in Active Directory are disabled, and any issued certificates are revoked. However, additional steps may be required to disconnect current VPN sessions or prevent future remote connections.

Certificate Revocation

When certificates are used for authentication, for example when a device tunnel is deployed, or a user tunnel is configured to use Extensible Authentication Protocol (EAP) with user certificate authentication, immediately revoking issued user and device certificates and publishing a new Certificate Revocation List (CRL) is recommended. However, this will not instantly prevent VPN access because revocation information is cached on the VPN and NPS servers, as well as any online responders. The process of flushing certificate revocation caches is challenging and time consuming as well.

Blocking Users

To immediately prevent users from accessing the VPN, a security group must be created in Active Directory that contains users that will be denied access. In addition, a Network Policy must be created on the Network Policy Server (NPS) that denies access to users belong to this security group.

NPS Configuration

Once the security group has been created, open the NPS management console (nps.msc) and perform the following steps.

  1. Expand Policies.
  2. Right-click Network Policies and choose New.
  3. Enter a descriptive name for the policy in the Policy name field.
  4. Select Remote Access Server (VPN-Dial up) from the Type of network access server drop-down list.
  5. Click Next.
  6. Click Add.
    1. Select User Groups.
    2. Click Add.
    3. Click Add Groups.
    4. Select the security group create for denied users.
    5. Click Ok twice.
  7. Click Next.
  8. Select Access denied.
  9. Click Next four times and click Finish.

Denying Access to Always On VPN Users or Computers

Denying Access to Always On VPN Users or Computers

Once complete, move the deny access policy so that it is before the policy that allows VPN access.

Denying Access to Always On VPN Users or Computers

Device Tunnel Considerations

Since device tunnel connections don’t use the NPS for authentication, blocking devices from establishing Always On VPN connections requires a different technique. Once again, revoking the computer certificate and publishing a new CRL is recommended, but isn’t immediately effective. To address this challenge, it is recommended that the computer certificate issued to the client be retrieved from the issuing CA and placed in the local computer’s Untrusted Certificates store on each VPN server, as shown here.

Note: The certificate must be imported on each VPN server in the organization.

Terminating Connections

Once the guidance above is put in to place, any user or device that is denied access will be unable to connect to the VPN. However, if a user or device is currently connected when these changes are implemented, additional steps must be taken to proactively terminate their existing session. When using Windows Server Routing and Remote Access Service (RRAS) as the VPN server, uUser sessions can be proactively terminated using RRAS management console or PowerShell.

GUI

To terminate an established Always On VPN connection, open the RRAS management console (rrasmgmt.msc), highlight Remote Access Clients, then right-click the client connection and choose Disconnect. Repeat the process for any additional connections established by the user or device.

Denying Access to Always On VPN Users or Computers

PowerShell

Alternatively, Always On VPN connections can also be terminated programmatically using PowerShell. To identify currently connected users on a VPN server, open an elevated PowerShell command window and run the following command.

Get-RemoteAccessConnectionStatistics | Format-Table -AutoSize

Next, to disconnect a user tunnel, identify the User Principal Name (UPN) of the user to disconnect and include it in the following PowerShell command.

Disconnect-VpnUser -UserName “user@corp.example.net”

To disconnect a device tunnel, identify the Fully-Qualified Domain Name (FQDN) of the device to disconnect and include it in the following PowerShell command.

Disconnect-VpnUser -UserName “client1.corp.example.net”

Additional Information

Windows 10 Always On VPN Hands-On Training

Always On VPN and IKEv2 Fragmentation

The IKEv2 protocol is a popular choice when designing an Always On VPN solution. When configured correctly it provides the best security compared to other protocols. The protocol is not without some unique challenges, however. IKEv2 is often blocked by firewalls, which can prevent connectivity. Another lesser know issue with IKEv2 is that of fragmentation. This can result in failed connectivity that can be difficult to troubleshoot.

IP Fragmentation

IKEv2 uses UDP for transport, and typically most packets are relatively small. The exception to this is when authentication takes place, especially when using client certificate authentication. The problem is further complicated by long certificate chains and by RSA keys, especially those that are greater than 2048 bit. If the payload exceeds 1500 bytes, the IP packet will have to be broken in to smaller fragments to be sent over the network. If an intermediary device in the path is configured to use a smaller Maximum Transmission Unit (MTU), that device may fragment the IP packets.

IP Fragmentation and Firewalls

Many routers and firewalls are configured to drop IP fragments by default. When this happens, IKEv2 communication may begin initially, but subsequently fail. This typically results in an error code 809 with a message stating the following.

“Can’t connect to [connection name]. The network connection between your computer and the VPN server could not be established because the remote server is not responding. This could be because one of the network devices (e.g. firewalls, NAT, routers, etc.) between your computer and the remote server is not configured to allow VPN connections. Please contact your Administrator or your service provider to determine which device may be causing the problem.”

Always On VPN and IKEv2 Fragmentation

Troubleshooting

When troubleshooting potential IKEv2 fragmentation-related connection failures, a network trace should be taken of the connection attempt on the client. Observe the packet sizes during the conversation, especially IKE_AUTH packets. Packet sizes exceeding the path MTU will have to be fragmented, as shown here.

Always On VPN and IKEv2 Fragmentation

Measuring Path MTU

Measuring the path MTU between the client and server can be helpful when troubleshooting fragmentation related issues. The mtupath.exe utility is an excellent and easy to use tool for this task. The tool can be downloaded here.

Always On VPN and IKEv2 Fragmentation

IKEv2 Fragmentation

To address the challenges with IP fragmentation and potential connectivity issues associated with network devices dropping fragmented packets, the IKEv2 protocol itself can be configured to perform fragmentation at the IKE layer. This eliminates the need for IP layer fragmentation, resulting in better reliability for IKEv2 VPN connections.

Both the server and the client must support IKEv2 fragmentation for this to occur. Many firewall and VPN vendors include support for IKEv2 fragmentation. Consult the vendor’s documentation for configuration guidance. For Windows Server Routing and Remote Access (RRAS) servers, the feature was first introduced in Windows Server 1803 and is supported in Windows Server 2019. Windows 10 clients support IKEv2 fragmentation beginning with Windows 10 1803.

Enabling IKEv2 Fragmentation

Windows 10 clients support IKEv2 fragmentation by default. However, it must be enabled on the server via the registry. The following PowerShell command will enable IKEv2 fragmentation support on Windows Server 1803 and later.

New-ItemProperty -Path “HKLM:\SYSTEM\CurrentControlSet\Services\RemoteAccess\Parameters\Ikev2\” -Name EnableServerFragmentation -PropertyType DWORD -Value 1 -Force

Validation Testing

Once IKEv2 fragmentation is configured on the VPN server, a network capture will reveal the IKE_SA_INIT packet now includes the IKEV2_FRAGMENTATION_SUPPORTED notification message.

Always On VPN and IKEv2 Fragmentation

Additional Information

Windows 10 Always On VPN IKEv2 Security Configuration

RFC 7383 – IKEv2 Message Fragmentation

IEA Software MTU Path Scan Utility

Windows 10 Always On VPN Hands-On Training Classes

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load BalancingLoad balancing Windows Server Network Policy Servers (NPS) is straightforward in most deployment scenarios. Most VPN servers, including Windows Server Routing and Remote Access Service (RRAS) servers allow the administrator to configure multiple NPS servers for redundancy and scalability. In addition, most solutions support weighted distribution, allowing administrators to distribute requests evenly between multiple NPS servers (round robin load balancing) or to distribute them in order of priority (active/passive failover).

The Case for NPS Load Balancing

Placing NPS servers behind a dedicated network load balancing appliance is not typically required. However, there are some deployment scenarios where doing so can provide important advantages.

Deployment Flexibility

Having NPS servers fronted by a network load balancer allows the administrator to configure a single, virtual IP address and hostname for the NPS service. This provides deployment flexibility by allowing administrators to add or remove NPS servers without having to reconfigure VPN servers, network firewalls, or VPN clients. This can be beneficial when deploying Windows updates, migrating NPS servers to different subnets, adding more NPS servers to increase capacity, or performing rolling upgrades of NPS servers.

Traffic Shaping

Dedicated network load balancers allow for more granular control and of NPS traffic. For example, NPS routing decisions can be based on real server availability, ensuring that authentication requests are never sent to an NPS server that is offline or unavailable for any reason. In addition, NPS traffic can be distributed based on server load, ensuring the most efficient use of NPS resources. Finally, most load balancers also support fixed or weighted distribution, enabling active/passive failover scenarios if required.

Traffic Visibility

Using a network load balancer for NPS also provides better visibility for NPS authentication traffic. Most load balancers feature robust graphical displays of network utilization for the virtual server/service as well as backend servers. This information can be used to ensure enough capacity is provided and to monitor and plan for additional resources when network traffic increases.

Configuration

Before placing NPS servers behind a network load balancer, the NPS server certificate must be specially prepared to support this unique deployment scenario. Specifically, the NPS server certificate must be configured with the Subject name of the cluster, and the Subject Alternative Name field must include both the cluster name and the individual server’s hostname.

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load Balancing

Create Certificate Template

Perform the following steps to create a certificate template in AD CS to support NPS load balancing.

  1. Open the Certificate Templates management console (certtmpl.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Right-click the RAS and IAS Servers default certificate template and choose Duplicate.
  3. Select the Compatibility tab.
    1. Select Windows Server 2008 or a later version from the Certification Authority drop-down list.
    2. Select Windows Vista/Server 2008 or a later version from the Certificate recipient drop-down list.
  4. Select the General tab.
    1. Enter a descriptive name in the Template display name field.
    2. Choose an appropriate Validity period and Renewal period.
    3. Do NOT select the option to Publish certificate in Active Directory.
  5. Select the Cryptography tab.
    1. Chose Key Storage Provider from the Provider Category drop-down list.
    2. Enter 2048 in the Minimum key size field.
    3. Select SHA256 from the Request hash drop-down list.
  6. Select the Subject Name tab.
    1. Select the option to Supply in the request.
  7. Select the Security tab.
    1. Highlight RAS and IAS Servers and click Remove.
    2. Click Add.
    3. Enter the security group name containing all NPS servers.
    4. Check the Read and Enroll boxes in the Allow column in the Permissions for [group name] field.
  8. Click Ok.

Perform the steps below to publish the new certificate template in AD CS.

  1. Open the Certification Authority management console (certsrv.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Expand Certification Authority (hostname).
  3. Right-click Certificate Templates and choose New and Certificate Template to Issue.
  4. Select the certificate template created previously.
  5. Click Ok.

Request Certificate on NPS Server

Perform the following steps to request a certificate for the NPS server.

  1. Open the Certificates management console (certlm.msc) on the NPS server.
  2. Expand the Personal folder.
  3. Right-click Certificates and choose All Tasks and Request New Certificate.
  4. Click Next.
  5. Click Next.
  6. Select the NPS server certificate template and click More information is required to enroll for this certificate link.
  7. Select the Subject tab.
    1.  Select Common name from the Type drop-down list in the Subject name section.
    2. Enter the cluster fully-qualified hostname (FQDN) in the Value field.
    3. Click Add.
    4. Select DNS from the Type drop-down list in the Alternative name section.
    5. Enter the cluster FQDN in the Value field.
    6. Click Add.
    7. Enter the NPS server’s FQDN in the Value field.
    8. Click Add.
      Always On VPN and Network Policy Server (NPS) Load Balancing
  8. Select the General tab.
    1. Enter a descriptive name in the Friendly name field.
  9. Click Ok.
  10. Click Enroll.

Load Balancer Configuration

Configure the load balancer to load balance UDP ports 1812 (authentication) and 1813 (accounting). Optionally, to ensure that authentication and accounting requests go to the same NPS server, enable source IP persistence according to the vendor’s guidance. For the KEMP LoadMaster load balancer, the feature is called “port following”. On the F5 BIG-IP it is called a “persistence profile”, and on the Citrix NetScaler it is called a “persistency group”.

Additional Information

Always On VPN IKEv2 Load Balancing with KEMP LoadMaster

Always On VPN Hands-On Training Classes in U.S. and Europe

%d bloggers like this: