Always On VPN and Windows Routing and Remote Access Service (RRAS)

Windows 10 Always On VPN hands-on training classes now forming. Details here.

Always On VPN and Windows Routing and Remote Access Service (RRAS)

As I’ve written about in the past, Windows 10 Always On VPN has many advantages over DirectAccess. One of the most important features is that Always On VPN is completely infrastructure independent. Always On VPN is implemented entirely on the client side, so there is no reliance on Windows infrastructure servers at all. In theory, you could deploy an Always On VPN solution using an entirely third-party backend infrastructure. This is crucial because many organizations already have security infrastructure in place today. However, there are still some compelling reasons to choose Windows Server 2016 as the VPN server to support Windows 10 Always On VPN.

Considerations for Windows Server

Windows Server 2016 includes a very capable VPN server in the Routing and Remote Access Service (RRAS) role. Using Windows Server 2016 RRAS will meet the requirements for many deployment scenarios. RRAS also provides some unique advantages too. The following are some important considerations for choosing RRAS for VPN.

Easy to Deploy

The RRAS role in included in all Windows server network operating systems and can be enabled easily using the GUI or PowerShell. RRAS is mature and well-documented, making installation and configuration simpler. In fact, all of the Microsoft Windows 10 Always On VPN documentation guidance references RRAS.

Reduced Costs

No investment in proprietary hardware is required, because RRAS runs on Windows Server 2016 and can be deployed on existing virtual infrastructure. Deploying additional RRAS virtual machines enables quick and efficient scaling up of the solution without the need to deploy additional expensive hardware. Importantly, RRAS requires no additional per-client or per-device licensing. In addition, RRAS can be managed using existing Windows administration skill sets and does not require dedicated, and often expensive solution-specific expertise.

Modern Protocol Support

RRAS includes support for modern VPN protocols such as Internet Key Exchange version 2 (IKEv2) and Secure Socket Tunneling Protocol (SSTP). IKEv2 is the protocol of choice or most deployments, and is required for supporting the device tunnel. SSTP is a firewall-friendly protocol that ensures remote Windows clients can connect from anywhere. Layer Two Tunneling Protocol over IPsec (L2TP/IPsec) and Point-to-Point Tunneling Protocol (PPTP) are also supported for legacy client compatibility.


Although Windows 10 Always On VPN can be implemented using third-party VPN servers, it’s important not to overlook Windows server either. Windows Server 2016 RRAS has some important advantages over third-party infrastructure. RRAS is mature and well understood, with an abundance of published documentation available. Leveraging RRAS eliminates the need for costly proprietary hardware and client licensing, while at the same time reducing administrative overhead and streamlining support. RRAS also includes native support for modern VPN protocols, ensuring reliable client connectivity from any location.

Additional Resources

3 Important Advantages of Windows 10 Always On VPN over DirectAccess 

Windows 10 Always On VPN and the Future of DirectAccess 

5 Things DirectAccess Administrators Should Know About Always On VPN 



DirectAccess and NetMotion Mobility Webinar

Update: You can view the on-demand recording of this webinar here.

DirectAccess on Windows Server 2016 CoreFor many years, DirectAccess has been the gold standard for enterprise remote access. Its seamless and transparent operation improves productivity for mobile workers, and since it is always on, administrators enjoy improved visibility and management for their field-based assets.

As incredible as DirectAccess is, it is not without its limitations. For example, DirectAccess works only with Windows Enterprise edition clients that are joined to the domain. Professional Edition and non-domain joined machines are not supported. It also lacks many of the security features enterprise organizations require, such as device health checks and granular network access. In addition, DirectAccess communication is complex, with many different layers of encapsulation, authentication, and encryption. High protocol overhead can lead to poor performance over high latency or low bandwidth connections.

NetMotion Mobility as an Alternative to DirectAccessNetMotion Mobility is a secure remote access solution that is an excellent alternative to DirectAccess. It provides the same seamless, transparent, always on remote connectivity that DirectAccess provides, while at the same time offering much more in terms of features and capabilities. It supports a much broader range of clients, includes native Network Access Control (NAC) and application filtering, and offers enhanced performance.

To learn more about NetMotion Mobility, join me on Wednesday, September 20 at 10:00AM PDT for a free live webinar with NetMotion. I’ll provide an overview of NetMotion Mobility and how it compares with DirectAccess. I’ll also demonstrate how it can help overcome some of the inherent limitations of DirectAccess too. Register today!

DirectAccess and NetMotion Mobility Webinar

DirectAccess and Azure Multifactor Authentication


DirectAccess and Azure Multifactor AuthenticationDirectAccess can be configured to enforce strong user authentication using smart cards or one-time passwords (OTP). This provides the highest level of assurance for remote users connecting to the internal network via DirectAccess. OTP solutions are commonly used because they require less administration and are more cost effective than typical smart card implementations. Most OTP solutions will integrate with DirectAccess as long as they support Remote Access Dial-In User Service (RADIUS).

DirectAccess and Azure Multifactor Authentication

Azure Authentication-as-a-Service

Azure Multifactor Authentication (MFA) is a popular OTP provider used to enable strong user authentication for a variety of platforms, including web sites and client-based VPN. Unfortunately, it doesn’t work with DirectAccess. This is because Azure MFA uses a challenge/response method for which DirectAccess does not support. To use OTP with DirectAccess, the user must be able to enter their PIN and OTP immediately when prompted. There is no provision to begin the authentication process and wait for a response from the OTP provider.

PointSharp ID Multifactor Authentication

An excellent alternative to Azure MFA is PointSharp ID. PointSharp is a powerful OTP platform that integrates easily with DirectAccess. It is also very flexible, allowing for more complex authentication schemes for those workloads that support it, such as Exchange and Skype for Business.

DirectAccess and Azure Multifactor AuthenticationEvaluate PointSharp

You can download a fully-functional trial version of PointSharp ID here (registration required). The PointSharp ID and DirectAccess integration guide with detailed step-by-step instructions for configuring DirectAccess and PointSharp ID can be downloaded here. Consulting services are also available to assist with integrating PointSharp ID with DirectAccess, VPN, Exchange, Skype for Business, Remote Desktop Services, or any other solution that requires strong user authentication. More information about consulting services can be found here.

Additional Information

PointSharp Multifactor Authentication
Configure DirectAccess with OTP Authentication
DirectAccess Consulting Services
Implementing DirectAccess with Windows Server 2016

%d bloggers like this: