Always On VPN IKEv2 Load Balancing Issue with Kemp LoadMaster

Always On VPN IKEv2 Load Balancing Issue with Kemp LoadMasterA recent update to the Kemp LoadMaster load balancer may cause failed connections for Always On VPN connections using IKEv2. SSTP VPN connections are unaffected.

Load Balancing IKEv2

When using the Kemp LoadMaster load balancer to load balance IKEv2, custom configuration is required to ensure proper operation. Specifically, the virtual service must be configured to use “port following” to ensure both the initial request on UDP port 500 and the subsequent request on UDP port 4500 are sent to the same real server. This requires the virtual service to be configured to operate at layer 7. Detailed configuration guidance for load balancing IKEv2 on the Kemp LoadMaster load balancer can be found here.

Always On VPN IKEv2 Load Balancing Issue with Kemp LoadMaster

Issues with LMOS 7.2.48.0

A recent release of the Load Master Operating System (LMOS) v7.2.48.0 introduced a bug that affects UDP services configured to operate at layer 7, which includes IKEv2. This bug breaks Always On VPN connections using IKEv2, resulting in failed connections. When this occurs, the administrator may encounter an error 809 message for device tunnel or user tunnel.

Always On VPN IKEv2 Load Balancing Issue with Kemp LoadMaster

Update Available

Administrators who use the Kemp LoadMaster load balancer to load balance Always On VPN IKEv2 connections and have updated to LMOS 7.2.48.0 are encouraged to update to LMOS 7.2.48.1 immediately. This latest update includes a fix that resolves broken IKEv2 load balancing for Always On VPN. Once the LoadMaster has been updated to 7.2.48.1, Always On VPN connections using IKEv2 should complete successfully.

Additional Information

Windows 10 Always On VPN IKEv2 Load Balancing with Kemp LoadMaster Load Balancer

Windows 10 Always On VPN SSTP Load Balancing with Kemp LoadMaster Load Balancer

Windows 10 Always On VPN Load Balancing with Kemp LoadMaster in Azure

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

Always On VPN Load Balancing with Kemp in Azure

Always On VPN Load Balancing with Kemp in AzureIn a recent post I discussed options for load balancing Windows Server Routing and Remote Access Service (RRAS) in Microsoft Azure for Always On VPN. There are many choices available to the administrator, however the best alternative is to use a dedicated Application Delivery Controller (ADC), or load balancer. The Kemp LoadMaster load balancer is an excellent choice here, as it is easy to configure and deploy. It is also very cost effective and offers flexible licensing plans, including a metered licensing option.

Deploy LoadMaster in Azure

To provision a Kemp LoadMaster load balancer in Microsoft Azure, open the Azure management console and perform the following steps.

1. Click Create Resource.
2. Enter LoadMaster in the search field.
3. Click on LoadMaster Load Balancer ADC Content Switch.

Always On VPN Load Balancing with Kemp in Azure

4. Choose an appropriate license model from the Select a software plan drop-down list.
5. Click Create.

Prepare Azure Instance

Follow the steps below to provision the Azure VM hosting the Kemp LoadMaster load balancer.

1. Choose an Azure subscription to and resource group to deploy the resources to.
2. Provide instance details such as virtual machine name, region, availability options, and image size.
3. Select an authentication type and upload the SSH private key or provide a username and password.
4. Click Next:Disks >.

Always On VPN Load Balancing with Kemp in Azure

5. Select an OS disk type.
6. Click Next: Networking >.

Always On VPN Load Balancing with Kemp in Azure

7. Select a virtual network and subnet for the load balancer.
8. Create or assign a public IP address.
9. Click Review + create.

Always On VPN Load Balancing with Kemp in Azure

LoadMaster Configuration

Once the virtual machine has been provisioned, open a web browser and navigate to the VM’s internal IP address on port 8443 to accept the licensing terms.

Always On VPN Load Balancing with Kemp in Azure

Next, log in with your Kemp ID and password to finish licensing the appliance.

Always On VPN Load Balancing with Kemp in Azure

Finally, log in to the appliance using the username ‘bal’ and the password provided when the virtual machine was configured.

Always On VPN Load Balancing with Kemp in Azure

Azure Network Security Group

A Network Security Group (NSG) is automatically configured and associated with the LoadMaster’s network interface when the appliance is created. Additional inbound security rules must be added to allow VPN client connectivity.

In the Azure management console open the properties for the LoadMaster NSG and follow the steps below to configure security rules to allow inbound VPN protocols.

SSTP

1. Click Inbound security rules.
2. Click Add.
3. Choose Any from the Source drop-down list.
4. Enter * in the Source port ranges field.
5. Select Any from the Destination drop-down list.
6. Enter 443 in the Destination port ranges field.
7. Select the TCP protocol.
8. Select the Allow action.
9. Enter a value in the Priority field.
10. Enter a name for the service in the Name field.
11. Click Add.

Always On VPN Load Balancing with Kemp in Azure

IKEv2

1. Click Inbound security rules.
2. Click Add.
3. Choose Any from the Source drop-down list.
4. Enter * in the Source port ranges field.
5. Select Any from the Destination drop-down list.
6. Enter 500 in the Destination port ranges field.
7. Select the UDP protocol.
8. Select the Allow action.
9. Enter a value in the Priority field.
10. Enter a name for the service in the Name field.
11. Click Add.
12. Repeat the steps below for UDP port 4500.

Always On VPN Load Balancing with Kemp in Azure

Load Balancing SSTP and IKEv2

Refer to the following posts for detailed, prescriptive guidance for configuring the Kemp LoadMaster load balancer for Always On VPN load balancing.

Always On VPN SSTP Load Balancing with Kemp LoadMaster

Always On VPN IKEv2 Load Balancing with the Kemp LoadMaster

Always On VPN Load Balancing Deployment Guide for the Kemp LoadMaster

Summary

Although Windows Server RRAS is not a formally supported workload in Azure, it is still a popular and effective solution for Always On VPN deployments. The Kemp LoadMaster load balancer can be deployed quickly and easily to provide redundancy and increase scalability for larger deployments.

Additional Information

Windows 10 Always On VPN SSTP Load Balancing with Kemp LoadMaster Load Balancers

Windows 10 Always On VPN IKEv2 Load Balancing with Kemp LoadMaster Load Balancers

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp LoadMaster Load Balancers

Deploying the Kemp LoadMaster Load Balancer in Microsoft Azure

Always On VPN Load Balancing for RRAS in Azure

Always On VPN Load Balancing for RRAS in AzurePreviously I wrote about Always On VPN options for Microsoft Azure deployments. In that post I indicated that running Windows Server with the Routing and Remote Access Service (RRAS) role for VPN was an option to be considered, even though it is not a formally supported workload. Despite the lack of support by Microsoft, deploying RRAS in Azure works well and is quite popular. In fact, I recently published some configuration guidance for RRAS in Azure.

Load Balancing Options for RRAS

Multiple RRAS servers can be deployed in Azure to provide failover/redundancy or to increase capacity. While Windows Network Load Balancing (NLB) can be used on-premises for RRAS load balancing, NLB is not supported and doesn’t work in Azure. With that, there are several options for load balancing RRAS in Azure. They include DNS round robin, Azure Traffic Manager, the native Azure load balancer, Azure Application Gateway, or a dedicated load balancing virtual appliance.

DNS Round Robin

The easiest way to provide load balancing for RRAS in Azure is to use round robin DNS. However, using this method has some serious limitations. Simple DNS round robin can lead to connection attempts to a server that is offline. In addition, this method doesn’t accurately balance the load and often results in uneven distribution of client connections.

Azure Traffic Manager

Using Azure Traffic Manager is another alternative for load balancing RRAS in Azure. In this scenario each VPN server will have its own public IP address and FQDN for which Azure Traffic Manager will intelligently distribute traffic. Details on configuring Azure Traffic Manager for Always On VPN can be found here.

Azure Load Balancer

The native Azure load balancer can be configured to provide load balancing for RRAS in Azure. However, it has some serious limitations. Consider the following.

  • Supports Secure Socket Tunneling Protocol (SSTP) only.
  • Basic health check functionality (port probe only).
  • Limited visibility.
  • Does not work with IKEv2.
  • Does not support TLS offload for SSTP.

More information about the Azure Load Balancer can be found here.

Azure Application Gateway

The Azure Application Gateway can be used for load balancing RRAS SSTP VPN connections where advanced capabilities such as enhanced health checks and TLS offload are required. More information about the Azure Application Gateway can be found here.

Load Balancing Appliance

Using a dedicated Application Delivery Controller (ADC), or load balancer is a very effective way to eliminate single points of failure for Always On VPN deployments hosted in Azure. ADCs provide many advanced features and capabilities to ensure full support for all RRAS VPN protocols. In addition, ADCs offer much better visibility and granular control over VPN connections. There are many solutions available as virtual appliances in the Azure marketplace that can be deployed to provide RRAS load balancing in Azure.

Summary

Deploying Windows Server RRAS in Azure for Always On VPN can be a cost-effective solution for many organizations. Although not a formally supported workload, I’ve deployed it numerous times and it works quite well. Consider using a dedicated ADC to increase scalability or provide failover and redundancy for RRAS in Azure whenever possible.

Additional Information

Windows 10 Always On VPN Options for Azure Deployments

Windows 10 Always On VPN and RRAS in Microsoft Azure

Windows 10 Always On VPN with Microsoft Azure Gateway

Error Importing Windows Server RRAS Configuration

Error Importing Windows Server RRAS Configuration Windows Server and the Routing and Remote Access Service (RRAS) is a popular choice for Windows 10 Always On VPN deployments. It is easy to implement and support, offers flexible scalability, and is cost-effective. In addition, it provides support for a TLS-based VPN protocol which is required for many deployments.

Configuration Backup

When deploying RRAS to support Always On VPN, it’s an excellent idea to export the configuration once all settings have been finalized. Often this is done by opening an elevated command window and running netsh.exe ras dump and piping the output to a text file, as shown here.

netsh.exe ras dump > rasconfig.txt

Import Error

Importing a saved configuration is accomplished by opening an elevated command window and running netsh.exe exec [filename], as shown here.

netsh.exe exec rasconfig.txt

Oddly, this doesn’t work by default. The import will fail and return the following error message.

“The following command was not found: ■.”

Error Importing Windows Server RRAS Configuration

Root Cause

Importing the RRAS configuration fails because the default configuration output is saved in Unicode format. Inexplicably this encoding is not recognized by netsh.exe when importing the configuration.

Workaround

Follow the steps below to save the configuration file in a format that can be imported using netsh.exe.

1. Open the exported configuration file using notepad.exe.
2. From the Menu bar choose File > Save As.
3. From the Encoding drop-down list choose ANSI.
4. Click Save.

Error Importing Windows Server RRAS Configuration

Once complete, import the file using netsh.exe exec [filename]. Restart the RemoteAccess service to apply the changes.

PowerShell

Administrators can use PowerShell to export the RRAS configuration and ensure the correct encoding format is used by default. To do this, open an elevated PowerShell window and run the following command.

Invoke-Command -ScriptBlock {netsh ras dump} | Out-File [filename] -Encoding ASCII

Additional Information

Windows 10 Always On VPN and Windows Server Routing and Remote Access Service (RRAS)

Windows 10 Always On VPN Protocol Recommendations for Windows Server Routing and Remote Access Service (RRAS)

Always On VPN SSTP Load Balancing with Kemp LoadMaster

Always On VPN SSTP Load Balancing with Kemp LoadMaster The Windows Server Routing and Remote Access Service (RRAS) includes support for the Secure Socket Tunneling Protocol (SSTP), which is a Microsoft proprietary VPN protocol that uses SSL/TLS for security and privacy of VPN connections. The advantages of using SSTP for Always On VPN is that it is firewall friendly and ensures consistent remove connectivity even behind highly restrictive firewalls.

Load Balancing SSTP

In a recent post, I described some of the use cases and benefits of SSTP load balancing as well as the offloading of TLS for SSTP VPN connections. Using a load balancer for SSTP VPN connections increases scalability, and offloading TLS for SSTP reduces resource utilization and improves performance for VPN connections. There are positive security benefits too.

Note: A comprehensive reference with detailed, prescriptive guidance for configuring the Kemp LoadMaster for Always On VPN can be found in the Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers. Download this free guide now!

Configuration

Enabling load balancing on the Kemp LoadMaster platform is fundamentally similar to load balancing HTTPS web servers. However, there are a few subtle but important differences.

Health Check

Using a standard TCP port check on the LoadMaster will not accurately reflect the health of the SSTP service running on the RRAS server. In addition, using a simple TCP port check could yield unexpected results. To ensure accurate service status monitoring, it is recommended that HTTP or HTTPS health checks be configured instead.

Real Server Check Method

Open the Kemp LoadMaster management console and follow the steps below to enable HTTP/HTTPS health checks for SSTP.

1. Expand Virtual Services in the navigation pane.
2. Click View/Modify Services.
3. Click Modify on the SSTP VPN virtual service.
4. Expand Real Servers.
5. Select HTTPS Protocol from the Real Server Check Method drop-down list. Alternatively, if TLS offload is enabled select HTTP Protocol.
6. In the URL field enter /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/ and click Set URL.
7. In the Status Codes field enter 401 and click Set Status Codes.
8. Check the box next to Use HTTP/1.1.
9. Select Head from the HTTP Method drop-down list.

Always On VPN SSTP Load Balancing with Kemp LoadMaster

TLS Offload

It is generally recommended that TLS offload not be enabled for SSTP VPN. However, if TLS offload is desired, it is configured in much the same way as a common HTTPS web server. Specific guidance for enabling TLS offload on the Kemp LoadMaster load balancer can be found in the Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers. Details for configuring RRAS and SSTP to support TLS offload can be found here.

Certificates

When enabling TLS offload for SSTP VPN connections it is recommended that the public SSL certificate be installed on the RRAS server, even though TLS processing will be handled on the LoadMaster and HTTP will be used between the LoadMaster and the RRAS server. If installing the public SSL certificate on the RRAS server is not an option, additional configuration will be required. Specifically, TLS offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be found here.

Once the script has been downloaded, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

Example:

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Re-Encryption

When offloading TLS for SSTP VPN connections, all traffic between the LoadMaster and the RRAS server will be sent in the clear using HTTP. In some instances, TLS offload is required only for traffic inspection, not performance gain. In this scenario the LoadMaster will be configured to terminate and then re-encrypt connections to the RRAS server. When terminating TLS on the LoadMaster and re-encrypting connections to the RRAS server is required, the same certificate must be used on both the LoadMaster and the RRAS server. Using different certificates on the RRAS server and the load balancer is not supported.

Additional Information

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

Windows 10 Always On VPN SSTP Load Balancing and SSL Offload

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN ECDSA SSL Certificate Request for SSTP

Windows 10 Always On VPN SSTP Connects then Disconnects

Windows 10 Always On VPN SSTP Load Balancing with F5 BIG-IP

Always On VPN SSTP Load Balancing with F5 BIG-IP

Always On VPN SSTP Load Balancing with F5 BIG-IP The Windows Server Routing and Remote Access Service (RRAS) includes support for the Secure Sockets Tunneling Protocol (SSTP), which is a Microsoft proprietary VPN protocol that uses SSL/TLS for security and privacy of VPN connections. The advantage of using SSTP for Always On VPN is that it is firewall friendly and ensures consistent remote connectivity even behind highly restrictive firewalls.

Load Balancing SSTP

In a recent post, I described some of the use cases and benefits of SSTP load balancing as well as the offloading of TLS for SSTP VPN connections. Using a load balancer for SSTP VPN connections increases scalability, and offloading TLS for SSTP reduces resource utilization and improves performance for VPN connections. There are positive security benefits too.

Configuration

Enabling load balancing for SSTP on the F5 BIG-IP platform is fundamentally similar to load balancing HTTPS web servers. However, there are a few subtle but important differences.

Default Monitor

The default HTTP and HTTPS monitors on the F5 will not accurately reflect the health of the SSTP service running on the RRAS server. In addition, using a simple TCP port monitor could yield unexpected results. To ensure accurate service status monitoring, a new custom monitor must be created to validate the health of the SSTP service.

Custom SSTP Monitor

Open the F5 BIG-IP management console and follow the steps below to create and assign a new custom monitor for SSTP.

Create Monitor

1. In the navigation tree highlight Local Traffic.
2. Click Monitors.
3. Click Create.

Always On VPN SSTP Load Balancing with F5 BIG-IP

4. Enter a descriptive name in the Name field and from the Type drop-down list choose HTTP if TLS offload is enabled, or HTTPS if it is not.
5. In the Send String field enter HEAD /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/ HTTP/1.1\r\nHost:r\nConnection: Close\r\n\r\n.
6. In the Receive String field enter HTTP/1.1 401.
7. Click Finished.

Always On VPN SSTP Load Balancing with F5 BIG-IP

Assign Monitor

1. Below Local Traffic click Pools.
2. Click on the SSTP VPN server pool.
3. In the Health Monitors section select the SSTP VPN health monitor from the Available list and make it Active.
4. Click Update.

Always On VPN SSTP Load Balancing with F5 BIG-IP

CLI Configuration

If you prefer to configure the SSTP VPN monitor using the F5’s Command Line Interface (CLI), you can download the monitor configuration from my GitHub here.

TLS Offload

It is generally recommended that TLS offload not be enabled for SSTP VPN. However, if TLS offload is desired, it is configured in much the same way as a common HTTPS web server. Specific guidance for enabling TLS offload on the F5 BIG-IP can be found here. Details for configuring RRAS and SSTP to support TLS offload can be found here.

Certificates

When enabling TLS offload for SSTP VPN connections it is recommended that the public SSL certificate be installed on the RRAS server, even though TLS processing will be handled on the F5 and HTTP will be used between the F5 and the RRAS server. If installing the public SSL certificate on the RRAS server is not an option, additional configuration will be required. Specifically, TLS offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be found here.

Once the script has been downloaded, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

Example:

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Re-Encryption

When offloading TLS for SSTP VPN connections, all traffic between the F5 and the RRAS server will be sent in the clear using HTTP. In some instances, TLS offload is required only for traffic inspection, not performance gain. In this scenario the F5 will be configured to terminate and then re-encrypt connections to the RRAS server. When terminating TLS on the F5 and re-encrypting connections to the RRAS server is required, the same certificate must be used on both the F5 and the RRAS server. Using different certificates on the RRAS server and the load balancer is not supported.

Additional Information

Windows 10 Always On VPN SSTP Load Balancing and SSL Offload

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN ECDSA SSL Certificate Request for SSTP

Windows 10 Always On VPN SSTP Connects then Disconnects

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

 

Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Always On VPN IKEv2 Load Balancing with F5 BIG-IPThe Internet Key Exchange version 2 (IKEv2) is the protocol of choice for Always On VPN deployments where the highest level of security is required. Implementing Always On VPN at scale often requires multiple VPN servers to provide sufficient capacity and to provide redundancy. Commonly an Application Delivery Controller (ADC) or load balancer is configured in front of the VPN servers to provide scalability and high availability for Always On VPN.

Load Balancing IKEv2

In a recent post I described some of the unique challenges load balancing IKEv2 poses, and I demonstrated how to configure the Kemp LoadMaster load balancer to properly load balance IKEv2 VPN connections. In this post I’ll outline how to configure IKEv2 VPN load balancing on the F5 BIG-IP load balancer.

Note: This article assumes the administrator is familiar with basic F5 BIG-IP load balancer configuration, such as creating nodes, pools, virtual servers, etc.

Initial Configuration

Follow the steps below to create a virtual server on the F5 BIG-IP to load balance IKEv2 VPN connections.

Pool Configuration

To begin, create two pools on the load balancer. The first pool will be configured to use UDP port 500, and the second pool will be configured to use UDP port 4500. Each pool is configured with the VPN servers defined as the individual nodes.

Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Virtual Server Configuration

Next create two virtual servers, the first configured to use UDP port 500 and the second to use UDP port 4500.

Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Persistence Profile

To ensure that both IKEv2 UDP 500 and 4500 packets are delivered to the same node, follow the steps below to create and assign a Persistence Profile.

1. Expand Local Traffic > Profiles and click Persistence.
2. Click Create.
3. Enter a descriptive name for the profile in the Name field.
4. Select Source Address Affinity from the Persistence Type drop-down list.
5. Click the Custom check box.
6. Select the option to Match Across Services.
7. Click Finished.

Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Assign the new persistence profile to both UDP 500 and 4500 virtual servers. Navigate to the Resources tab on each virtual server and select the new persistence profile from the Default Persistence Profile drop-down list. Be sure to do this for both virtual servers.

Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Additional Resources

Windows 10 Always On VPN IKEv2 Load Balancing with Kemp LoadMaster Load Balancer 

Windows 10 Always On VPN IKEv2 Security Configuration

Windows 10 Always On VPN and IKEv2 Fragmentation

Windows 10 Always On VPN Certificate Requirements for IKEv2

Video: Windows 10 Always On VPN Load Balancing with the Kemp LoadMaster Load Balancer

Always On VPN SSTP Load Balancing and SSL Offload

SSL Certificate Considerations for DirectAccess IP-HTTPSThe Windows Server Routing and Remote Access Service (RRAS) is a popular choice for a VPN server to support Windows 10 Always On VPN deployments. One significant advantage RRAS provides is support for the Secure Socket Tunneling Protocol (SSTP). SSTP is a Microsoft proprietary VPN protocol that uses Transport Layer Security (TLS) to ensure privacy between the VPN client and server. The advantage to using a TLS-based transport is that it leverages the standard HTTPS TCP port 443, making it firewall friendly and ensuring ubiquitous remote access even behind highly restrictive firewalls.

Load Balancing SSTP

Load balancing SSTP can be accomplished in much the same way as a load balancing a common web server using HTTPS. The external load balancer is configured with a virtual IP address (VIP) and each VPN server is configured behind it. Session persistence should be configured to use SSL with source IP address persistence as a fallback.

SSL Offload for SSTP

In most cases, simply forwarding encrypted SSTP connections to the VPN server will be sufficient. However, offloading SSL/TLS processing to an Application Delivery Controller (ADC) or load balancer can be beneficial for the following reasons.

Resource Utilization

Enabling TLS offload for SSTP VPN connections can reduce CPU and memory utilization on the VPN server. However, this will likely only be necessary for very busy servers supporting many concurrent connections.

Security

In some cases, the administrator may not be able to install the public SSL certificate on the VPN server. For example, a security policy may exist that restricts SSL certificate installation to dedicated security devices using a Hardware Security Module (HSM). In some cases, it may be desirable to restrict access to high value certificates such as wildcard certificates.

Certificate Management

Often SSL certificates are implemented on load balancers to reduce certificate sprawl and to ease the management and administration burden in the enterprise. By having all enterprise certificates installed only on dedicated security devices, administrators can more effectively monitor and manage SSL certificate lifecycles.

SSTP Configuration for TLS Offload

Configuration changes must be made on the load balancer and the RRAS server to support TLS offload for SSTP.

Load Balancer

Install the public SSL certificate on the load balancer and configure it for TLS termination. Configure the load balancer to then use HTTP for backend server connections. Consult the load balancer vendor’s documentation for configuration guidance.

Load Balancing Always On VPN SSTP Load Balancing with F5 BIG-IP

RRAS Server

If the public SSL certificate is installed on the VPN server, enabling TLS offload for SSTP is simple and straightforward. Follow the steps below to enable TLS offload for SSTP VPN connections.

  1. Open the RRAS management console (rrasmgmt.msc).
  2. Right-click the VPN server and choose Properties.
  3. Select the Security tab.
  4. Check Use HTTP in the SSL Certificate Binding section.
  5. Click Ok and then Yes to restart the Remote Access service.

Always On VPN SSTP Load Balancing and SSL Offload

If the public SSL certificate is not or cannot be installed on the RRAS server, additional configuration will be required. Specifically, SSL offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be downloaded here.

Once the script has been downloaded and imported, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

For example…

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Re-Encryption

When offloading TLS for SSTP VPN connections, all traffic between the load balancer and the VPN server will be sent in the clear using HTTP. In some scenarios, TLS offload is required only for traffic inspection, not performance gain. When terminating TLS on the load balancer and re-encrypting connections to the VPN server is required, it is only supported if the same certificate is used on both the load balancer and the VPN server.

Additional Information

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN SSL Load Balancing with F5 BIG-IP

Windows 10 Always On VPN IKEv2 and SSTP Fallback

Windows 10 Always On VPN Hands-On Training Classes for 2019

 

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load BalancingLoad balancing Windows Server Network Policy Servers (NPS) is straightforward in most deployment scenarios. Most VPN servers, including Windows Server Routing and Remote Access Service (RRAS) servers allow the administrator to configure multiple NPS servers for redundancy and scalability. In addition, most solutions support weighted distribution, allowing administrators to distribute requests evenly between multiple NPS servers (round robin load balancing) or to distribute them in order of priority (active/passive failover).

The Case for NPS Load Balancing

Placing NPS servers behind a dedicated network load balancing appliance is not typically required. However, there are some deployment scenarios where doing so can provide important advantages.

Deployment Flexibility

Having NPS servers fronted by a network load balancer allows the administrator to configure a single, virtual IP address and hostname for the NPS service. This provides deployment flexibility by allowing administrators to add or remove NPS servers without having to reconfigure VPN servers, network firewalls, or VPN clients. This can be beneficial when deploying Windows updates, migrating NPS servers to different subnets, adding more NPS servers to increase capacity, or performing rolling upgrades of NPS servers.

Traffic Shaping

Dedicated network load balancers allow for more granular control and of NPS traffic. For example, NPS routing decisions can be based on real server availability, ensuring that authentication requests are never sent to an NPS server that is offline or unavailable for any reason. In addition, NPS traffic can be distributed based on server load, ensuring the most efficient use of NPS resources. Finally, most load balancers also support fixed or weighted distribution, enabling active/passive failover scenarios if required.

Traffic Visibility

Using a network load balancer for NPS also provides better visibility for NPS authentication traffic. Most load balancers feature robust graphical displays of network utilization for the virtual server/service as well as backend servers. This information can be used to ensure enough capacity is provided and to monitor and plan for additional resources when network traffic increases.

Configuration

Before placing NPS servers behind a network load balancer, the NPS server certificate must be specially prepared to support this unique deployment scenario. Specifically, the NPS server certificate must be configured with the Subject name of the cluster, and the Subject Alternative Name field must include both the cluster name and the individual server’s hostname.

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load Balancing

Create Certificate Template

Perform the following steps to create a certificate template in AD CS to support NPS load balancing.

  1. Open the Certificate Templates management console (certtmpl.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Right-click the RAS and IAS Servers default certificate template and choose Duplicate.
  3. Select the Compatibility tab.
    1. Select Windows Server 2008 or a later version from the Certification Authority drop-down list.
    2. Select Windows Vista/Server 2008 or a later version from the Certificate recipient drop-down list.
  4. Select the General tab.
    1. Enter a descriptive name in the Template display name field.
    2. Choose an appropriate Validity period and Renewal period.
    3. Do NOT select the option to Publish certificate in Active Directory.
  5. Select the Cryptography tab.
    1. Chose Key Storage Provider from the Provider Category drop-down list.
    2. Enter 2048 in the Minimum key size field.
    3. Select SHA256 from the Request hash drop-down list.
  6. Select the Subject Name tab.
    1. Select the option to Supply in the request.
  7. Select the Security tab.
    1. Highlight RAS and IAS Servers and click Remove.
    2. Click Add.
    3. Enter the security group name containing all NPS servers.
    4. Check the Read and Enroll boxes in the Allow column in the Permissions for [group name] field.
  8. Click Ok.

Perform the steps below to publish the new certificate template in AD CS.

  1. Open the Certification Authority management console (certsrv.msc) on the certification authority (CA) server or a management workstation with remote administration tool installed.
  2. Expand Certification Authority (hostname).
  3. Right-click Certificate Templates and choose New and Certificate Template to Issue.
  4. Select the certificate template created previously.
  5. Click Ok.

Request Certificate on NPS Server

Perform the following steps to request a certificate for the NPS server.

  1. Open the Certificates management console (certlm.msc) on the NPS server.
  2. Expand the Personal folder.
  3. Right-click Certificates and choose All Tasks and Request New Certificate.
  4. Click Next.
  5. Click Next.
  6. Select the NPS server certificate template and click More information is required to enroll for this certificate link.
  7. Select the Subject tab.
    1.  Select Common name from the Type drop-down list in the Subject name section.
    2. Enter the cluster fully-qualified hostname (FQDN) in the Value field.
    3. Click Add.
    4. Select DNS from the Type drop-down list in the Alternative name section.
    5. Enter the cluster FQDN in the Value field.
    6. Click Add.
    7. Enter the NPS server’s FQDN in the Value field.
    8. Click Add.
      Always On VPN and Network Policy Server (NPS) Load Balancing
  8. Select the General tab.
    1. Enter a descriptive name in the Friendly name field.
  9. Click Ok.
  10. Click Enroll.

Load Balancer Configuration

Configure the load balancer to load balance UDP ports 1812 (authentication) and 1813 (accounting). Optionally, to ensure that authentication and accounting requests go to the same NPS server, enable source IP persistence according to the vendor’s guidance. For the KEMP LoadMaster load balancer, the feature is called “port following”. On the F5 BIG-IP it is called a “persistence profile”, and on the Citrix NetScaler it is called a “persistency group”.

Additional Information

Always On VPN IKEv2 Load Balancing with KEMP LoadMaster

Always On VPN Hands-On Training Classes in U.S. and Europe

Always On VPN Hands-On Training Classes for 2018

Windows 10 Always On VPN Hands-On Training Classes for 2018I’m pleased to announce I will be delivering Windows 10 Always On VPN hands-on training classes in various locations around the U.S. this year. As Microsoft continues to move away from DirectAccess in favor of Windows 10 Always On VPN, many organizations now must come up to speed on this new technology. Spoiler alert…it’s not trivial to implement! There’s lots of moving parts, critical infrastructure dependencies, and many configuration options to choose from. Additionally, Windows 10 Always On VPN is managed in a completely different way than DirectAccess, which is sure to present its own unique challenges.

Comprehensive Education

My Windows 10 Always On VPN hands-on training classes will cover all aspects of designing, implementing, and supporting an Always On VPN solution in the enterprise. This three-day course will cover topics such as…

  • Windows 10 Always On VPN overview
  • Introduction to CSP
  • Infrastructure requirements
  • Planning and design considerations
  • Installation, configuration, and client provisioning

Advanced topics will include…

  • Redundancy and high availability
  • Cloud-based deployments
  • Third-party VPN infrastructure and client support
  • Multifactor authentication
  • Always On VPN migration strategies

Upcoming Training Classes

Reservations are being accepted immediately for classes held on March 27-29, 2018 in Southern California and April 10-12 in Chicago. The cost for this 3 day hands-on, in-depth training class is $4995.00 USD. Later this year I’ll be delivering classes in other parts of the country as well. Those locations will be chosen based on demand, so if you can’t make this first class, please register anyway and let me know your location preference. If there’s enough interest in a specific locale I will schedule a class for that region soon. Although I currently have no plans to deliver my training classes outside the U.S., I’m more than happy to consider it if there is enough demand, so let me know!

Windows 10 Always On VPN Hands-On Training Classes for 2018

Reservations Available Now

Reservations are being accepted now! The cost for this 3-day hands-on training class is $4995.00 USD. Space is limited, so don’t wait to register! Fill out the form below to save your seat now.

%d bloggers like this: