Always On VPN and DirectAccess Scripts and Sample Files on GitHub

Always On VPN and DirectAccess Scripts and Sample Files on GitHubIf you’re looking for specialized configuration scripts for Windows 10 Always On VPN, Windows Server Routing and Remote Access Service (RRAS), or DirectAccess then have a look at my GitHub page! There I’ve uploaded a few tools I’ve created (with the help of my good friend Jeff Hicks!) along with some sample ProfileXML files. Here’s a sample of what you’ll find there today.

Always On VPN

This repository includes PowerShell scripts and sample ProfileXML files used for configuring Windows 10 Always On VPN. These scripts have been adopted from those provided by Microsoft and modified to work with a separate XML file. These scripts can be used for local testing and for deploying Always On VPN connections using System Center Configuration Manager (SCCM). The ProfileXML files can be helpful for those administrators looking for real world configuration examples.

https://github.com/richardhicks/aovpn

SstpOffload

This repository includes a PowerShell script to enable TLS offload for Windows Server RRAS Secure Socket Tunneling Protocol (SSTP) VPN connections when the public SSL certificate can’t be installed on the RRAS server. TLS offload for SSTP can be enabled in scenarios where better security, performance, and scalability are desired.

https://github.com/richardhicks/sstpoffload

DirectAccess

This repository includes the PowerShell script Move-DaInboxAccountingDatabase which can be used to move the DirectAccess inbox accounting database files. The default location of the database files is on the C: drive, and many administrators have encountered disk space issues, especially in large scale deployments. This script will relocate the database files to the location of your choice.

https://github.com/richardhicks/directaccess

More to Come!

Be sure to check my GitHub site for more PowerShell script and sample files on a regular basis. Or better yet, give me a follow! I’ll be sure to post more as time goes on. In addition, I’ll be going through my older articles where I’ve provided PowerShell code samples and will include them in the repository too.

Standard Disclaimer

All the sample files and PowerShell scripts I’ve shared on GitHub are provided as-is. Although they’ve been thoroughly tested, I can’t be certain I’ve accommodated every deployment scenario. Please use caution when running these scripts on production machines.

Additional Information

Always On VPN Hands-On Training Classes 2019

Jeff Hicks’ Blog

Always On VPN IKEv2 Security Configuration

Always On VPN IKEv2 Security ConfigurationWhen deploying Windows 10 Always On VPN, many administrators choose the Internet Key Exchange version 2 (IKEv2) protocol to provide the highest level of security and protection for remote connections. However, many do not realize the default security parameters for IKEv2 negotiated between a Windows Server running the Routing and Remote Access Service (RRAS) and a Windows 10 VPN client are far less than ideal from a security perspective. Additional configuration on both the server and the client will be required to ensure adequate security and protection for IKEv2 VPN connections.

Windows 10 and RRAS IKEv2 Defaults

In their default configuration, a Windows 10 client connecting to a Windows Server running RRAS will negotiate an IKEv2 VPN connection using the following IPsec security parameters.

  • Encryption: 3DES
  • Authentication/Integrity: SHA-1
  • Key Size: DH Group 2 (1024 bit)

This information can be obtained by opening an elevated PowerShell command window and running the following command.

Get-NetIPsecMainModeSA | Select-Object -First 1

Always On VPN IKEv2 Security Configuration

This can also be confirmed by viewing a network trace as shown here.

Always On VPN IKEv2 Security Configuration

These IPsec security parameters might have been acceptable in the 90’s, but they certainly are not today. 🙂

Improving IKEv2 Security

To provide a baseline level of protection to meet today’s requirements for security and privacy for IKEv2 VPN connections, the following are the minimum recommended IPsec security parameters.

  • Encryption: AES128
  • Authentication/Integrity: SHA-256
  • Key Size: DH Group 14 (2048 bit)

RRAS Custom IPsec Policy

To implement these recommended security baselines for IKEv2 on a Windows Server running RRAS it will be necessary to define a custom IPsec security policy. To do this, open an elevated PowerShell command window and run the following commands on each RRAS server.

Set-VpnServerConfiguration -CustomPolicy -AuthenticationTransformConstants SHA256128 -CipherTransformConstants AES128 -DHGroup Group14 -EncryptionMethod AES128 -IntegrityCheckMethod SHA256 -PFSgroup PFS2048 -SADataSizeForRenegotiationKilobytes 102400

Restart the Remote Access Management service for the changes to take effect.

Restart-Service RaMgmtSvc -PassThru

Always On VPN IKEv2 Security Configuration

Windows 10 Client Settings

The IPsec policy must match on both the server and the client for an IKEv2 VPN connection to be successful. Unfortunately, none of the IKEv2 IPsec security association parameters proposed by default on Windows 10 clients use 2048-bit keys (DH Group 14), so it will be necessary to define a custom IPsec security policy on the client to match the settings configured on the server.

To configure a matching IPsec security policy on an individual Windows 10 VPN client, open an elevated PowerShell command window and run the following command.

$connection = “[connection name]”
Set-VpnConnectionIPsecConfiguration -ConnectionName $connection -AuthenticationTransformConstants SHA256128 -CipherTransformConstants AES128 -DHGroup Group14 -EncryptionMethod AES128 -IntegrityCheckMethod SHA256 -PFSgroup PFS2048 -Force

Always On VPN IKEv2 Security Configuration

Restore Defaults

In the process of testing it may be necessary to restore the default IKEv2 configuration on both the client and the server. This can be accomplished by running the following PowerShell commands.

Server – Set-VpnServerConfiguration -RevertToDefault

Client – Set-VpnConnectionIPsecConfiguration -ConnectionName [connection_name] -RevertToDefault -Force

Always On VPN XML Settings

To implement a custom IPsec policy using the minimum recommended security settings for an Always On VPN connection using IKEv2, add the following settings to your ProfileXML.

<VPNProfile>
 <NativeProfile>
  <CryptographySuite>
   <AuthenticationTransformConstants>SHA256128</AuthenticationTransformConstants>
   <CipherTransformConstants>AES128</CipherTransformConstants>
   <EncryptionMethod>AES128</EncryptionMethod>
   <IntegrityCheckMethod>SHA256</IntegrityCheckMethod>
   <DHGroup>Group14</DHGroup>
   <PfsGroup>PFS2048</PfsGroup>
  </CryptographySuite>
 </NativeProfile>
</VPNProfile>

Why Not AES 256?

In the examples above you’ll notice that I’ve chosen to use AES128 and not AES256. This is by design, as AES256 does not provide any practical additional security in most use cases. Details here.

Enhanced Security and Performance

To further improve security and performance for IKEv2, consider implementing Elliptic Curve Cryptography (EC) certificates and using Galois Counter Mode (GCM) cipher suites such as GCMAES128 for authentication and encryption.

Additional Information

Always On VPN Certificate Requirements for IKEv2

Always On VPN IKEv2 Connection Failure Error Code 800

Always On VPN IKEv2 Load Balancing with the KEMP LoadMaster Load Balancer

Always On VPN and Windows Server 2019 NPS Bug

When deploying a Windows Server 2019 Network Policy Server (NPS) to support a Windows 10 Always On VPN implementation, administrators may encounter the following error when attempting to establish a VPN connection on a remote Windows 10 client.

Can’t connect to [connection name].

The connection was prevented because of a policy configured on your RAS/VPN server. Specifically, the authentication method used by the server to verify your username and password may not match the authentication method configured in your connection profile. Please contact the Administrator of the RAS server and notify them of this error.

Always On VPN and Windows Server 2019 Network Policy Server Bug
In addition, an event ID 20227 from the RasClient will be recorded in the application event log with the following error message.

The user [username] dialed a connection named [connection name] which has failed. The error code returned on failure is 812.

Always On VPN and Windows Server 2019 Network Policy Server Bug

Common Causes

Always On VPN error code 812 indicates an authentication policy mismatch between the client and the server. This often occurs when, for example, the server is configured to use Protected Extensible Authentication Protocol (PEAP), but the client is configured to use Microsoft CHAP Version 2 (MS-CHAP v2).

Troubleshooting

Carefully review the authentication policy on both the client and server to ensure they match. Next, enable firewall logging on the NPS server to log both allowed and dropped packets. Attempt another VPN connection and observe the firewall logs. In this example the firewall is dropping packets inbound on UDP port 1812.

Always On VPN and Windows Server 2019 Network Policy Server Bug

Interestingly, the default Windows firewall rule allowing inbound UDP port 1812 is enabled and set to allow for all profiles.

Always On VPN and Windows Server 2019 Network Policy Server Bug

Windows Server 2019 Bug

It appears that Microsoft’s recently released Windows Server 2019 has a bug that prevents NPS from working correctly out of the box. Specifically, it appears the default Windows firewall rules to allow inbound UDP port 1812 (RADIUS authentication) and inbound UDP port 1813 (RADIUS accounting) do not work. As a workaround the administrator can create new firewall rules to allow inbound UDP port 1812 and 1813 and restore NPS operation using the following PowerShell commands.

New-NetFirewallRule -Name “NPS-UDP-1812-In” -DisplayName “Network Policy Server (RADIUS Authentication – UDP-in)” -Description “Inbound rule to allow Network Policy Server to receive RADIUS authentication requests on UDP port 1812” -Group “Network Policy Server” -Protocol UDP -LocalPort 1812 -Direction Inbound -Profile Any -Action Allow -Enabled True

New-NetFirewallRule -Name “NPS-UDP-1813-In” -DisplayName “Network Policy Server (RADIUS Accounting – UDP-in)” -Description “Inbound rule to allow Network Policy Server to receive RADIUS accounting requests on UDP port 1813” -Group “Network Policy Server” -Protocol UDP -LocalPort 1813 -Direction Inbound -Profile Any -Action Allow -Enabled True

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

After installing and configuring DirectAccess in Windows Server 2019 you may encounter an error message indicating that IP-HTTPS is not working properly. Looking at the Operations Status overview in the Dashboard of the Remote Access Management console shows that the IP-HTTPS interface is in error.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

IP-HTTPS Route Error

Viewing the detailed Operations Status shows the following error message.

Error: The IP-HTTPS route does not have published property enabled.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Missing Route

Looking at the routing table on the DirectAccess server reveals that a route to the client IPv6 prefix is indeed missing.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Resolution

To resolve this error message, add the client IPv6 route to the DirectAccess server’s routing table and publish it. This is accomplished by running the following PowerShell commands on the DirectAccess server.

$IPv6prefix = (Get-RemoteAccess).ClientIPv6Prefix
New-NetRoute -AddressFamily IPv6 -DestinationPrefix $IPv6prefix -InterfaceAlias “Microsoft IP-HTTPS Platform Interface” -Publish Yes

Next, restart the Remote Access Management service (RaMgmtSvc) using the following PowerShell command.

Restart-Service RaMgmtSvc -PassThru

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Once complete, refresh the management console and the IP-HTTPS error message should be resolved and the operations status should state that it is now working properly.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

 

Additional Information

SSL Certificate Conisderations for DirectAccess IP-HTTPS

DirectAccess Expire IP-HTTPS Certificate and Error 0x800b0101

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803PowerShell is an essential tool for Windows administrators for configuration, task automation, monitoring, reporting, and problem resolution. When troubleshooting DirectAccess connectivity using the IP-HTTPS IPv6 transition technology, the Get-NetIPHttpsConfiguration and Get-NetIPHttpsState PowerShell commands are important for assessing the configuration and current state of the IP-HTTPS connection. When DirectAccess connectivity fails, these are some of the first commands an administrator will use to identify and resolve the issue.

Get-NetIPHttpsState

Get-NetIPHttpsState is especially helpful when IP-HTTPS connectivity fails because it returns an error code and interface status information that can provide clues as to why the connection was not completed successfully.

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

No Output in 1803

Beginning with Windows 10 1803, the DirectAccess administrator will notice that Get-NetIPHttpsState returns no data. The output of Get-NetIPHttpsState is blank.

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

Changes in 1803

As it turns out, this is a bug first introduced in Windows 10 1803 that is the result of a fundamental change in the way in which the IP-HTTPS interface is implemented in Windows. As of this writing, the bug has not been addressed in Windows 10 1803 or 1809.

Workaround

The good news is that there’s an easy workaround for this. Instead of using Get-NetIPHttpsState, the administrator can retrieve essential information about the IP-HTTPS interface using the following netsh command.

netsh interface httpstunnel show interface

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

Additional Information

SSL Certificate Considerations for DirectAccess IP-HTTPS 

Troubleshooting DirectAccess IP-HTTPS Error Code 0x800b0109

Troubleshooting DirectAccess IP-HTTPS Error Code 0x80090326

Troubleshooting DirectAccess IP-HTTPS Error Code 0x90320

Troubleshooting DirectAccess IP-HTTPS Error Code 0x2af9

Troubleshooting DirectAccess IP-HTTPS Error Code 0x800b0101

Always On VPN Device Tunnel Missing in Windows 10 UI

Always On VPN Device Tunnel Missing in Windows 10 UIUnlike DirectAccess, Always On VPN connections are provisioned to the user, not the machine. Beginning with Windows 10 release 1709 Microsoft introduced the device tunnel option to provide feature parity with DirectAccess. The device tunnel provides pre-logon network connectivity to support important deployment scenarios such as logging on without cached credentials and unattended remote systems management.

Device Tunnel Configuration

Guidance for creating and deploying a device tunnel connection can be found here. It’s important to note that the device tunnel is always on by default. Also, there can only be a single device tunnel configured per device. You must remove an existing device tunnel before configuring a new one.

Known Issues

After configuring a Windows 10 Always On VPN device tunnel the administrator may notice two anomalies. First, the device tunnel is missing in the Windows UI after it is created. Second, viewing the status of the device tunnel connection using PowerShell indicates the connection is “disconnected” even though it is connected.

Device Tunnel Missing

As you can see below, event though both a device and user tunnel have been provisioned, the Windows UI reports only a single Always On VPN connection, that being the user connection.

Always On VPN Device Tunnel Missing in Windows 10 UI

However, the device tunnel does appear in the Network Connections control panel applet (ncpa.cpl), as shown here.

Always On VPN Device Tunnel Missing in Windows 10 UI

This is expected and by design. The device tunnel is not displayed to the user in the Windows UI as it is provisioned to the machine, not the user. It appears on the Control Panel because the applet is capable of enumerating both user and system connections.

Device Tunnel Disconnected

The status of the Windows 10 Always On VPN device tunnel connection can be viewed by running the Get-VpnConnection -AllUserConnection PowerShell command. However, at the time of this writing, PowerShell always reports the connection status as “Disconnected”. This appears to be a bug; one which Microsoft is hopefully working to address.

Always On VPN Device Tunnel Missing in Windows 10 UI

Summary

The Windows 10 Always On VPN device tunnel option allows administrators to enable scenarios previously supported with DirectAccess, including logging on without cached credentials and unattended remote support. Not all deployments require a device tunnel, but it is an important option available to administrators to address specific use cases.

Additional Information

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN RasMan Device Tunnel Failure

Deleting a Windows 10 Always On VPN Device Tunnel

 

Deploying Windows 10 Always On VPN with Microsoft Intune

Deploying Windows 10 Always On VPN with Microsoft IntuneWindows 10 Always On VPN is the replacement for Microsoft’s popular DirectAccess remote access solution. It provides the same seamless, transparent, always on remote connectivity as DirectAccess. Where DirectAccess relied heavily on classic on-premises infrastructure such as Active Directory and Group Policy, Always On VPN is infrastructure independent and is designed to be provisioned and managed using a Mobile Device Management (MDM) platform such as Microsoft Intune.

Intune and Always On VPN

Until recently, provisioning Windows 10 Always On VPN connections involved manually creating a ProfileXML and uploading to Intune using a custom profile. This has proven to be challenging for many, as the process is unintuitive and error prone.

A recent Intune update now allows administrators to create a basic Windows 10 Always On VPN deployment. Although it still has its limitations, it will go a long way to making the adoption of Always On VPN easier.

Prerequisites

Certificates must first be provisioned to all clients before deploying Windows 10 Always On VPN using Intune. In addition, if using a third-party VPN client, the VPN plug-in software must be installed prior to deploying the VPN profile.

Test VPN Connection

It is recommended that a test VPN connection be created on a client machine locally before deploying an Always On VPN profile using Intune. This allows the administrator to test connectivity and validate Extensible Authentication Protocol (EAP) settings. Once complete, run the following PowerShell commands to extract the EAP configuration settings to a file for later publishing with Intune.

$Vpn = Get-VpnConnection -Name [Test VPN connection name]
$Xml = $Vpn.EapConfigXmlStream.InnerXml | Out-File .\eapconfig.xml -Encoding ASCII

Deploying Always On VPN with Intune

Follow the steps below to deploy an Always On VPN connection using Intune.

Create a VPN Profile

  1. Open the Microsoft Intune management portal.
  2. Click Device configuration.
  3. Click Profiles.
  4. Click Create profile.

Deploying Windows 10 Always On VPN with Microsoft Intune

  1. Enter a name for the VPN profile.
  2. Enter a description (optional).
  3. From the Platform drop-down menu select Windows 10 and later.
  4. From the Profile type drop-down menu select VPN.
  5. In the Settings section click Configure.

Deploying Windows 10 Always On VPN with Microsoft Intune

Define VPN Profile Settings

  1. Click Base VPN.
  2. Enter a name for the connection.
  3. Enter a description and provide the Fully Qualified Domain Name (FQDN) of the VPN server. If it will be the default server select True and click Add.
  4. Enter a description and provide the FQDN for any additional VPN servers, as required.
  5. From the Connection type drop-down list choose the preferred connection type.
  6. In the Always On section click Enable.
  7. Select Enable to Remember credentials at each logon (optional).
  8. Click Select a certificate.
  9. Choose a client authentication certificate and click Ok.
  10. Paste the contents of eapconfig.xml (saved previously) in the EAP Xml field.
  11. Click Ok.

Deploying Windows 10 Always On VPN with Microsoft Intune

Define Additional Settings

You can also configure the following optional VPN settings using Intune.

  • Apps and Traffic Rules
  • Conditional Access
  • DNS Settings
  • Proxy
  • Split Tunneling

Deploying Windows 10 Always On VPN with Microsoft Intune

After configuring any required additional settings, click Create.

Assign VPN Profile

  1. Click Assignments.
  2. From the Assign to drop-down menu choose Selected Groups.
  3. Click Select groups to include.
  4. Choose an Azure Active Directory group to apply the VPN profile and click Select.
  5. Click Save.

Deploying Windows 10 Always On VPN with Microsoft Intune

Limitations

Although the ability to provision Always On VPN using Microsoft Intune without using a custom profile is welcome, it is not without its limitations. At the time of this writing, only Always On VPN user profiles can be configured. A device tunnel, which is optional, must be configured manually using a custom profile. In addition, the Intune user interface lacks the ability to define settings for the following parameters:

  • Exclusion routes
  • Name Resolution Policy Table (NRPT) exemptions
  • Lockdown mode
  • DNS registration
  • Trusted network detection
  • Custom IKEv2 cryptography policy

To make changes to the default settings for any of the above parameters, a ProfileXML must be created manually and provisioned with Intune using a custom policy.

Additional Information

Windows 10 Always On VPN Device Tunnel Step-by-Step Configuration using PowerShell

Windows 10 Always On VPN Certificate Requirements for IKEv2

Windows 10 Always On VPN and the Name Resolution Policy Table (NRPT)

Windows 10 Always On VPN Hands-On Training

DirectAccess Selective Tunneling

DirectAccess Selective TunnelingDirectAccess administrators, and network administrators in general, are likely familiar with the terms “split tunneling” and “force tunneling”. They dictate how traffic is handled when a DirectAccess (or VPN) connection is established by a client. Split tunneling routes only traffic destined for the internal network over the DirectAccess connection; all other traffic is routed directly over the Internet. Force tunneling routes all traffic over the DirectAccess connection.

Force Tunneling

DirectAccess uses split tunneling by default. Optionally, it can be configured to use force tunneling if required. Force tunneling is commonly enabled when DirectAccess administrators want to inspect and monitor Internet traffic from field-based clients.

Note: One-time password user authentication is not supported when force tunneling is enabled. Details here.

Drawbacks

Force tunneling is not without its drawbacks. It requires that an on-premises proxy server be used by DirectAccess clients to access the Internet, in most cases. In addition, the user experience is often poor when force tunneling is enabled. This is caused by routing Internet traffic, which is commonly encrypted, over an already encrypted connection. The added protocol overhead caused by double encryption (triple encryption if you are using Windows 7!) along with using a sub-optimal network path increases latency and can degrade performance significantly. Also, location-based services typically fail to work correctly.

Selective Tunneling

“Selective Tunneling” is a term that I commonly use to describe a configuration where only one or a few specific public resources are tunneled over the DirectAccess connection. A common use case is where access to a cloud-based application is restricted to the IP address of a corporate proxy or firewall.

Using the Name Resolution Policy Table (NRPT) and taking advantage of DirectAccess and its requirement for IPv6, DirectAccess administrators can choose to selectively route requests for public hosts or domains over the DirectAccess connection. The process involves defining the public Fully Qualified Domain Name (FQDN) as “internal” in the DirectAccess configuration and then assigning an on-premises proxy server for DirectAccess clients to use to access that namespace.

Enable Selective Tunneling

While some of the selective tunneling configuration can be performed using the Remote Access Management console, some of it can only be done using PowerShell. For this reason, I prefer to do everything in PowerShell to streamline the process.

Run the following PowerShell commands on the DirectAccess server to enable selective tunneling for the “.example.com” domain.

$namespace = “.example.com” # include preceding dot for namespace, omit for individual host
$dnsserver = Get-ItemPropertyValue –Path HKLM:\\SYSTEM\CurrentControlSet\Services\RaMgmtSvc\Config\Parameters -Name DnsServers

Add-DAClientDnsConfiguration -DnsSuffix $namespace -DnsIpAddress $dnsserver -PassThru

$gpo = (Get-RemoteAccess).ClientGpoName
$gpo = $gpo.Split(‘\’)[1]
$proxy = “proxy.corp.example.net:8080” # this is the FQDN and port for the internal proxy server
$rule = (Get-DnsClientNrptRule -GpoName $gpo | Where-Object Namespace -eq $namespace | Select-Object -ExpandProperty “Name”)

Set-DnsClientNrptRule -DAEnable $true -DAProxyServerName $proxy -DAProxyType “UseProxyName” -Name $rule -GpoName $gpo

If Windows 7 client support has been enabled, run the following PowerShell commands on the DirectAccess server. If multisite is enabled, run these commands on one DirectAccess server in each entry point.

$downlevelgpo = (Get-RemoteAccess).DownlevelGpoName
$downlevelgpo = $downlevelgpo.Split(‘\’)[1]
$proxy = “proxy.corp.example.net:8080” # this is the FQDN and port for the internal proxy server
$downlevelrule = (Get-DnsClientNrptRule -GpoName $downlevelgpo | Where-Object Namespace -eq $namespace | Select-Object -ExpandProperty “Name”)

Set-DnsClientNrptRule -DAEnable $true -DAProxyServerName $proxy -DAProxyType “UseProxyName” -Name $downlevelrule -GpoName $downlevelgpo

To remove a namespace from the NRPT, run the following PowerShell command.

Remove-DAClientDnsConfiguration -DnsSuffix $namespace

Caveats

While selective tunneling works well for the most part, the real drawback is that only Microsoft browsers (Internet Explorer and Edge) are supported. Web sites configured for selective tunneling will not be reachable when using Chrome, Firefox, or any other third-party web browser. In addition, many web sites deliver content using more than one FQDN, which may cause some web pages to load improperly.

Additional Resources

DirectAccess Force Tunneling and Proxy Server Configuration

NetMotion Mobility for DirectAccess Administrators – Split vs. Force Tunneling

Unable to Generate DirectAccess Diagnostic Log in Windows 10 v1709

There are numerous reports that generating the DirectAccess troubleshooting log fails on Windows 10 v1709. DirectAccess administrators have been reporting that the process seems to fail during the creation of the log file, leaving it truncated and incomplete. To resolve this issue, open an elevated PowerShell window and enter the following command.

New-ItemProperty -Path “HKLM:\SYSTEM\CurrentControlSet\Services\NcaSvc\” -Name SvcHostSplitDisable -PropertyType DWORD -Value 1 -Force

The computer must be restarted for this change to take effect. If initial testing of this workaround is successful, the registry setting can be pushed out to all DirectAccess clients using Active Directory Group Policy Preferences.

DirectAccess Troubleshooting and the Windows 10 Network Connectivity Assistant

DirectAccess Troubleshooting and the Windows 10 Network Connectivity AssistantOne of the first places administrators look for information about the DirectAccess client connection is the Network Connectivity Assistant (NCA). The NCA is used to view current connection status and to gather detailed information that is helpful for troubleshooting failed DirectAccess connections. The NCA was first integrated with the client operating system beginning with Windows 8. Similar functionality can be extended to Windows 7 clients by installing and configuring the Windows 7 DirectAccess Connectivity Assistant (DCA).

NCA

The DirectAccess NCA can be accessed by pressing the Windows Key + I and then clicking on Network & Internet and DirectAccess. Here you’ll find a helpful visual indicator of current connectivity status, and for multisite deployments you’ll also find details about the current entry point.

DirectAccess Troubleshooting and the Windows 10 Network Connectivity Assistant

DirectAccess Missing?

If DirectAccess does not appear in the list, open an elevated PowerShell window and restart the Network Connectivity Assistant service (NcaSvc) using the following command.

Restart-Service NcaSvc

If you receive the error “Failed to start service ‘Network Connectivity Assistant (NcaSvc)‘”, ensure that the client operating system is Enterprise or Education edition. The NCA service will always fail to start on Professional edition as it is not a supported DirectAccess client.

Log Collection

The DirectAccess NCA also provides access to crucial troubleshooting information. Clicking on the Collect button creates a detailed diagnostic log file that is often helpful for troubleshooting DirectAccess connectivity issues.

DirectAccess Troubleshooting and the Windows 10 Network Connectivity Assistant

Troubleshooting Info Missing?

The option to collect a log, and email it to your IT admin will only be displayed if a support email address is defined in the DirectAccess configuration. To define a support email address, open the Remote Access Management console and perform the following steps.

1. Click Edit on Step 1.
2. Click Network Connectivity Assistant.
3. Enter an email address in the Helpdesk email address field.
4. Click Finish to complete Step 1.
5. Click Finish to apply the changes.

Email Program

Microsoft assumes that an end user will be generating the DirectAccess client troubleshooting log and will be emailing them to their administrator. If an email program is not installed on the client, the following information is displayed.

There is no email program associated to perform the requested action. Please install an email program or, if one is already installed, create an associate in the Default Programs control panel.

DirectAccess Troubleshooting and the Windows 10 Network Connectivity Assistant

If you wish to simply view the log file on the client and not email them, you can find the generated DirectAccess troubleshooting log file in HTML format in the following location.

%SystemDrive%\Users\%Username%\AppData\Local\Temp

DirectAccess Troubleshooting and the Windows 10 Network Connectivity Assistant

Unable to Generate Log Files

There are numerous reports that generating the DirectAccess troubleshooting log fails on Windows 10 v1709. DirectAccess administrators have been reporting that the process seems to fail during the creation of the log file, leaving it truncated and incomplete. To resolve this issue, open an elevated PowerShell window and enter the following command.

New-ItemProperty -Path “HKLM:\SYSTEM\CurrentControlSet\Services\NcaSvc\” -Name SvcHostSplitDisable -PropertyType DWORD -Value 1 -Force

The computer must be restarted for this change to take effect. If initial testing of this workaround is successful, the registry setting can be pushed out to all DirectAccess clients using Active Directory Group Policy Preferences.

Additional Information

Installing and Configuring DirectAccess Connectivity Assistant 2.0 on Windows 7 Clients

Planning and Implementing DirectAccess with Windows Server 2016 Video Training Course on Pluralsight

Managing and Supporting DirectAccess with Windows Server 2016 Video Training Course on Pluralsight

Implementing DirectAccess with Windows Server 2016 Book

%d bloggers like this: