Considerations for Always On VPN with Azure VPN Gateway and Virtual WAN

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Organizations migrating on-premises applications, data, and infrastructure to the cloud may also consider terminating Always On VPN connections there. Using one of the native Azure VPN services might be compelling at first glance. After all, having an Azure-managed VPN gateway service sounds intuitive. However, some severe limitations exist for using Azure VPN services for Always On VPN deployments.

Azure VPN Gateway

The following are limitations for Always On VPN with Azure VPN gateway.

Authentication Methods

Azure VPN gateway supports both EAP and machine certificate authentication. However, it can only support one authentication method at a time. With only EAP or certificate authentication, administrators must choose between a device or user tunnel. A single Azure VPN gateway cannot support both at the same time. For native Entra ID joined devices, this is not a problem. However, for native on-premises Active Directory or hybrid Entra ID joined devices, this is a problem, as the device tunnel is essential in these scenarios.

Note: Technically speaking, administrators could deploy another Azure VPN gateway to work around this limitation. However, Azure limits VPN gateway deployments to one per virtual network. This requires administrators to deploy a second VPN gateway in a separate virtual network, which then requires virtual network peering to be enabled, complicating the configuration greatly.

SSTP

Although the Azure VPN gateway supports SSTP, it is, unfortunately, a second-class citizen. Today, all SKUs of the Azure VPN gateway are limited to just 128 SSTP connections (256 in active/active mode). There is currently no way to increase this. If more than 256 connections are required, you must use IKEv2.

RADIUS

In addition, there is currently no option to change the default timeout value (30 seconds) for RADIUS authentication requests. This short timeout value presents a challenge when using MFA with the NPS extension or with Azure Conditional Access, as users may be unable to respond to the push notification before the timeout expires, resulting in failed authentication attempts.

In addition, Azure does not support routing traffic to on-premises RADIUS servers over ExpressRoute connections. In this scenario, administrators must route RADIUS traffic to on-premises servers over a site-to-site connection.

Geographic Redundancy

Geographic redundancy using Azure Traffic Manager (or another global server load balancer) with two or more gateways is not supported when using the Azure VPN gateway. Azure manages the certificate used on the gateway, which includes a certificate with the subject name of the individual gateway. There is no option to supply a custom certificate with a global hostname in the subject, which is required to support geographic redundancy. With that, administrators are limited to the redundancy provided natively by the Azure VPN gateway.

IPv6

Azure does not support Azure VPN gateway in a virtual network that includes IPv6 addressing.

Azure Virtual WAN

Azure Virtual WAN includes many of the same limitations as the Azure VPN gateway, in addition to the following.

SSTP

Unlike the Azure VPN gateway, there is no support for SSTP in Azure Virtual WAN.

IPv6

IPv6 is not currently supported at all in Azure Virtual WAN.

Summary

Intuitively, it seems that leveraging native Azure VPN gateway services would be ideal. However, due to the limitations outlined in this article, administrators must decide carefully if any of these prevent adoption in their environment. Although not formally supported, many organizations deploy Windows Server Routing and Remote Access (RRAS) servers in Azure to address these limitations.

Additional Information

Always On VPN Options for Azure Deployments

Always On VPN with Azure Gateway

Always On VPN Device Tunnel with Azure VPN Gateway

Always On VPN and RRAS in Azure

What is Azure VPN Gateway?

What is Azure Virtual WAN?

Azure Conditional Access Certificates with SID Information Now Available

I recently wrote about changes to certificate-based authentication affecting Always On VPN implementations. These changes were introduced by Microsoft’s security update KB5014754. When the update is installed on domain controllers and enterprise Certification Authorities (CAs), administrators can perform strong user mapping for certificates used for Active Directory authentication. However, when first introduced, the update came with some serious limitations that prevented administrators from enabling full enforcement mode for certificate mapping.

Limitations

When KB5014754 is installed on an enterprise issuing CA, a new certificate extension (1.3.6.1.4.1.311.25.2) is added to the issued certificate that includes the principal’s (user or device) Security Identifier (SID). However, this only occurs when an online template is used. An online template is one with the subject name built from Active Directory information. The SID is not embedded in certificates issued using an offline template. Offline templates are templates where the subject name is supplied in the request. There are two scenarios where this causes problems for Always On VPN.

Microsoft Intune

Certificates delivered with Microsoft Intune via the Intune Certificate Connector use an offline template. This applies to certificates using PKCS or SCEP. Today, the SID is not embedded by issuing CAs using offline templates.

Azure Conditional Access

The short-lived certificate issued by Azure when Conditional Access is configured for Always On VPN did not include the SID. However, that recently changed.

Recent Updates

Today we can scratch Azure Conditional Access off the list of limitations for Always On VPN. Microsoft recently introduced support for the new SID extension in Azure Conditional Access certificates, as shown here.

Now when an Azure Conditional Access certificate is issued to an on-premises user or device account that is synced with Azure Active Directory, Azure Conditional Access will include the SID information in the issued short-lived certificate.

Intune

Unfortunately, we’re still waiting for Microsoft to address the limitation with certificates delivered using Microsoft Intune. Hopefully we’ll see an update for that later this year.  

Additional Information

Certificate-Based Authentication Changes and Always On VPN

Microsoft KB5014754

Digital Certificates and TPM

Microsoft Intune Certificate Connector Service Account and PKCS

Always On VPN Trusted Network Detection and Native Azure AD Join

Administrators deploying Microsoft Always On VPN are quickly learning that the native Azure Active Directory join (AADJ) model has significant advantages over the more traditional Hybrid Azure AD join (HAADJ) scenario. Native AADJ is much simpler to deploy and manage than HAADJ while still allowing full single sign-on (SSO) to on-premises resources for remote users. Intune even allows for the import of custom ADMX and ADML administrative templates, further reducing the dependency on on-premises Active Directory for device management.

Remote Management

Although devices aren’t joined to the domain, administrators may still wish to access those clients connected to their network for device discovery or to perform administrative tasks. However, when native AADJ clients connect via Always On VPN, the Public Windows firewall profile is assigned to the VPN tunnel adapter. The Public profile is, of course, more restrictive and blocks most management protocols by default.

Firewall Rules

While adding firewall rules to the Public profile to allow management protocols is possible, this isn’t recommended for security reasons. The Public profile is typically loaded when the device is on an untrusted network. Exposing management protocols on an insecure network is asking for trouble.

Domain Profile

Domain-joined or Hybrid AADJ endpoints will use the Domain Windows firewall profile. This profile is more permissive, allowing many standard management protocols by default. Also, administrators can add rules to allow additional access as required without increasing the risk for devices on untrusted networks.

Trusted Network Detection

So, the trick is to get a native AADJ endpoint to load the Domain profile for the VPN tunnel adapter when connected via Always On VPN. Trusted Network Detection is accomplished by using settings configured on the endpoint using the NetworkListManager Configuration Service Provider (CSP).

Intune and XML

There are two settings administrators can enable AADJ devices to detect a trusted network and load the Domain Windows firewall profile. Unfortunately, these settings can only be applied using Intune and the Custom XML template. Administrators will use the following OMA-URI settings.

AllowedTlsAuthenticationEndpoints

The AllowedTlsAuthenticationEndpoints policy setting defines the URL the device uses to validate a trusted network. The target must be an on-premises web server with a valid TLS certificate using HTTPS. The target must be a highly available internal resource inaccessible from the Internet. DirectAccess administrators will be quite familiar with this concept; it’s the Network Location Server (NLS)!

Use the following OMA-URI to configure the TLS authentication endpoint.

URI: ./Device/Vendor/MSFT/Policy/Config/
NetworkListManager/AllowedTlsAuthenticationEndpoints

String: <![CDATA[https://nls.corp.example.net]]>

ConfiguredTlsAuthenticationNetworkName

The ConfiguredTlsAuthenticationNetworkName policy setting is optional. Administrators can use this setting to provide a friendly name for the authenticated trusted network. The FQDN of the target resource (NLS) is used by default. However, using this setting overrides the default with something more meaningful.

Use the following OMA-URI to configure the TLS authentication network name.

URI: ./Device/Vendor/MSFT/Policy/Config/
NetworkListManager/ConfiguredTlsAuthenticationNetworkName

String: <Friendly network name>

Results

Once configured, you’ll find the Always On VPN tunnel adapter uses the Domain Windows firewall profile and an optional friendly network name.

Additional Information

Deploying Always On VPN with Intune using Custom XML and CSP

Always On VPN CSP Updates

Always On VPN and VpnStrategy with CSP