Always On VPN Hands-On Training Classes for 2018

Windows 10 Always On VPN Hands-On Training Classes for 2018I’m pleased to announce I will be delivering Windows 10 Always On VPN hands-on training classes in various locations around the U.S. this year. As Microsoft continues to move away from DirectAccess in favor of Windows 10 Always On VPN, many organizations now must come up to speed on this new technology. Spoiler alert…it’s not trivial to implement! There’s lots of moving parts, critical infrastructure dependencies, and many configuration options to choose from. Additionally, Windows 10 Always On VPN is managed in a completely different way than DirectAccess, which is sure to present its own unique challenges.

Comprehensive Education

My Windows 10 Always On VPN hands-on training classes will cover all aspects of designing, implementing, and supporting an Always On VPN solution in the enterprise. This three-day course will cover topics such as…

  • Windows 10 Always On VPN overview
  • Introduction to CSP
  • Infrastructure requirements
  • Planning and design considerations
  • Installation, configuration, and client provisioning

Advanced topics will include…

  • Redundancy and high availability
  • Cloud-based deployments
  • Third-party VPN infrastructure and client support
  • Multifactor authentication
  • Always On VPN migration strategies

Upcoming Training Classes

Reservations are being accepted immediately for spots in the first class to be held on March 27-29, 2018 in Southern California. The cost for this 3 day hands-on, in-depth training class is $4995.00 USD. Later this year I’ll be delivering classes in other parts of the country as well. Those locations will be chosen based on demand, so if you can’t make this first class, please register anyway and let me know your location preference. If there’s enough interest in a specific locale I will schedule a class for that region soon. Although I currently have no plans to deliver my training classes outside the U.S., I’m more than happy to consider it if there is enough demand, so let me know!

Windows 10 Always On VPN Hands-On Training Classes for 2018

Reservations Available Now

Reserve a spot in my first Windows 10 Always On VPN training class in Southern California in March by filling out the form below. If you are interested in attending a training class closer to you, fill out the form and let me know. I’ll be sure to put you on the waiting list for an upcoming training class in your area.

Space is limited, so don’t wait! Reserve your spot today!

DirectAccess IP-HTTPS Null Cipher Suites Not Available

DirectAccess IP-HTTPS Null Cipher Suites Not AvailableMicrosoft first introduced support for null cipher suites for the IP-HTTPS IPv6 transition technology in Windows Server 2012, and it is supported for DirectAccess in Windows 8.x and Windows 10 clients. Using null cipher suites for IP-HTTPS eliminates the needless double encryption that occurs when using encrypted cipher suites. DirectAccess is a unique workload where SSL/TLS encryption isn’t really required because the payload being transported in HTTPS is already encrypted.

No Encryption by Design

When supporting Windows 8.x and Windows 10 clients, ensuring null cipher suites (TLS_RSA_WITH_NULL_SHA and TLS_RSA_WITH_NULL_SHA256) are enabled and operational is crucial to providing the highest levels of performance and scalability for the remote access solution. When following implementation best practices, this isn’t really an issue. However, in some cases null cipher suites may be disabled. This will result in reduced scalability and degraded performance for Windows 8.x and Windows 10 clients.

Validating SSL/TLS Configuration

The easiest way to verify that null cipher suites are being offered by the DirectAccess server is to use the Qualys SSL Labs server test site. Ideally you should see a result similar to this.

DirectAccess IP-HTTPS Null Cipher Suites Not AvailableFigure 1. Qualys SSL Labs server test site results for properly configured DirectAccess server.

Don’t be alarmed by the overall rating “F”. That happens because the Qualys test site is designed to test web servers where using null cipher suites would be a serious security issue. As I stated previously, the DirectAccess workload is unique in that its HTTPS payload is already encrypted, so using null cipher suites is acceptable in this scenario.

DirectAccess IP-HTTPS Null Cipher Suites Not AvailableFigure 2. Qualys SSL Labs server test site results for properly configured DirectAccess server showing support for null SSL/TLS cipher suites.

Null Cipher Suites Missing

When performing the Qualys SSL labs server test on a DirectAccess server, an overall rating of “A” is not desirable and indicates the DirectAccess server is misconfigured. This is caused by the lack of support for null cipher suites.

DirectAccess IP-HTTPS Null Cipher Suites Not AvailableFigure 3. Qualys SSL Labs server test site results for misconfigured DirectAccess server.

Common Causes

Null cipher suites for SSL and TLS can be disabled for a variety of reasons. Below are some of the most common causes for the lack of support for null cipher suites for DirectAccess.

Self-Signed Certificates – Using the Getting Started Wizard (simplified deployment) will configure DirectAccess using a self-signed certificate for IP-HTTPS. Using a self-signed certificate is discouraged for numerous reasons, most importantly because it disables support for null cipher suites.

Security Hardening – Security administrators may proactively disable support for null cipher suites in a misguided effort to “improve security” for DirectAccess. While this is acceptable and recommended on a web server, it is not advisable to disable null cipher suites on a DirectAccess server.

SSL Certificate Signing Algorithm – Using an SSL certificate signed with an Elliptical Curve (EC) key as opposed to an RSA key will result in the loss of support for null cipher suites for IP-HTTPS. High security/assurance certificates signed with EC keys are not recommended for use on DirectAccess servers and should be avoided if possible.

DirectAccess Configuration Options – Enabling One-Time Password (OTP) authentication on the DirectAccess server will also result in a loss of support for null cipher suites. Also, adding additional roles to the DirectAccess server such as client-based VPN or the Web Application Proxy (WAP) can also result in null cipher suites being disabled.

Summary

Null cipher suites are implemented by design on DirectAccess servers to enhance performance for Windows 8.x and Windows 10 clients and improve overall scalability for the implementation. They eliminate the pointless double encryption of DirectAccess communication, which itself is already encrypted. For optimal performance and scalability, be sure to follow implementation best practices and use a PKI-managed (public or private) SSL certificate signed with an RSA key (SHA-256 recommended). Resist the urge to “harden” the DirectAccess server by disabling support for null cipher suites, and avoid the use of SSL certificates signed with EC keys. In addition, carefully consider DirectAccess deployment options such as OTP authentication and consider deploying roles such as VPN and WAP on a separate server.

Additional Information

DirectAccess IP-HTTPS SSL and TLS Insecure Cipher Suites

DirectAccess IP-HTTPS Null Encryption and SSTP VPN

DirectAccess and FIPS Compliant Algorithms for Encryption

SSL Certificate Considerations for DirectAccess IP-HTTPS 

 

 

5 Things DirectAccess Administrators Should Know About Always On VPN

5 Things DirectAccess Administrators Should Know About Always On VPNWindows 10 Always On VPN hands-on training classes now forming. Details here.

As I’ve written about previously, Microsoft is no longer investing in DirectAccess going forward. There will be no new features or functionality added to the product in the future. Microsoft is now investing in Always On VPN in Windows 10, with new features being released with each semi-annual update of the operating system. But as Microsoft continues to make the push toward Always On VPN over DirectAccess, many administrators have asked about the ramifications of this shift in focus for enterprise remote access. Here are a few points to consider.

It’s the same thing, only different.

Always On VPN provides the same seamless, transparent, always on experience as DirectAccess. Under the covers, the mechanics of how that’s accomplished changes a bit, but fundamentally the user experience is exactly the same. Once a user logs on to their device, a VPN connection is established automatically and the user will have secure remote access to corporate resources.

The connection is still secure.

Where DirectAccess uses IPsec and Connection Security Rules (CSRs) to establish its secure tunnels, Always On VPN uses traditional client-based VPN protocols such as IKEv2, SSTP, L2TP, and PPTP. Both DirectAccess and Always On VPN use certificates for authentication. However, where DirectAccess uses machine certificates to authenticate the computer, Always On VPN leverages user certificates to authenticate the user.

(Note: Machine certificates will be required for Always On VPN when using the optional device tunnel configuration. I will publish more details about this configuration option in a future article.)

Provisioning and managing clients is different.

The administrative experience for Always On VPN is much different than it is with DirectAccess. Where DirectAccess made use of Active Directory and group policy for managing client and server settings, Always On VPN clients must be provisioned using a Mobile Device Management (MDM) solution such as Microsoft Intune, or any third-party MDM platform. Optionally, Always On VPN clients can be provisioned using Microsoft System Center Configuration Manager (SCCM), or manually using PowerShell.

Security is enhanced.

Always On VPN has the potential to provide much more security and protection than DirectAccess. Always On VPN supports traffic filtering, allowing administrators to restrict remote client communication by IP address, protocol, port, or application. By contrast, DirectAccess allows full access to the internal network after user logon with no native capability to restrict access. In addition, Always On VPN supports integration with Azure Active Directory, which enables conditional access and multifactor authentication scenarios.

It’s built for the future.

Always On VPN also provides support for modern authentication mechanisms like Windows Hello for Business. In addition, Windows Information Protection (WIP) integration is supported to provide essential protection for enterprise data.

Summary

Microsoft set the bar pretty high with DirectAccess. Users love the seamless and transparent access it provides, and administrators reap the benefit of improved systems management for field based devices. Always On VPN provides those same benefits, with additional improvements in security and protection. If you’d like more information about Always On VPN, fill out the form below and I’ll get in touch with you.

Additional Information

Always On VPN and the Future of DirectAccess

%d bloggers like this: