Always On VPN with Azure Gateway

Always On VPN with Azure GatewayRecently I wrote about VPN server deployment options for Windows 10 Always On VPN in Azure. In that post I indicated the native Azure VPN gateway could be used to support Always On VPN connections using Internet Key Exchange version 2 (IKEv2) and Secure Socket Tunneling Protocol (SSTP). In this post I’ll outline the requirements and configuration steps for implementing this solution.

Requirements

To support Always On VPN, point-to-site VPN connections must be enabled on the Azure VPN gateway. Not all Azure VPN gateways are alike, and point-to-site connections are not supported in all scenarios. For Always On VPN, the Azure VPN gateway must meet the following requirements.

VPN SKU

The Azure VPN gateway SKU must be VpnGw1, VpnGw2, VpnGw3, VpnGw1AZ, VpnGw2AZ, or VpnGw3AZ. The Basic SKU is not supported.

VPN Type

The VPN type must be route-based. Policy-based VPN gateways are not supported for point-to-site VPN connections.

Limitations

Using the Azure VPN gateway for Always On VPN may not be ideal in all scenarios. The following limitations should be considered thoroughly before choosing the Azure VPN gateway for Always On VPN.

Device Tunnel

RADIUS/EAP authentication for user tunnel connections is not supported if the Azure VPN gateway is configured to support device tunnel with machine certificate authentication.

Maximum Connections

A maximum of 250, 500, and 1000 concurrent IKEv2 connections are supported when using the VpnGw1/AZ, VpnGw2/AZ, and VpnGw3/AZ SKUs, respectively (x2 for active/active gateway deployments). In addition, a maximum of 128 concurrent SSTP connections are supported for all VPN gateway SKUs (x2 for active/active gateway deployments).

Always On VPN with Azure Gateway

Reference: https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways#gwsku

RADIUS Requirements

To support Always On VPN connections, the Azure VPN gateway must be configured to authenticate to a RADIUS server. The RADIUS server must be reachable from the VPN gateway subnet. The RADIUS server can be hosted in Azure or on-premises. Before proceeding, ensure that any network routes, firewall rules, and site-to-site VPN tunnel configuration is in place to allow this communication.

RADIUS Configuration

Guidance for configuring Windows Server NPS for Always On VPN can be found here. The only difference when configuring NPS for use with Azure VPN gateway is the RADIUS client configuration.

Open the NPS management console (nps.msc) and follow the steps below to configure Windows Server NPS to support Always On VPN client connections from the Azure VPN gateway.

1. Expand RADIUS Clients and Servers.
2. Right-click RADIUS Clients and choose New.
3. Enter a descriptive name in the Friendly name field.
4. Enter the Azure VPN gateway subnet using CIDR notation in the Address (IP or DNS) field. The gateway subnet can be found by viewing the properties of the Azure VPN gateway in the Azure portal.
5. Enter the shared secret to be used for RADIUS communication in the Shared secret field.

Always On VPN with Azure Gateway

Azure VPN Gateway Configuration

To begin, provision a Virtual Network Gateway in Azure that meets the requirements outlined above. Guidance for implementing an Azure VPN gateway can be found here. Once complete, follow the steps below to enable support for Always On VPN client connections.

Enable Point-to-Site

Perform the following steps to enable point-to-site VPN connectivity.

1. In the navigation pane of the Azure VPN gateway settings click Point-to-site configuration.
2. Click Configure Now and specify an IPv4 address pool to be assigned to VPN clients. This IP address pool must be unique in the organization and must not overlap with any IP address ranges defined in the Azure virtual network.
3. From the Tunnel type drop-down list select IKEv2 and SSTP (SSL).
4. In the RADIUS authentication field enter the IPv4 address of the RADIUS server. At the time of this writing only a single IPv4 address is supported. If RADIUS redundancy is required, consider creating a load balanced NPS cluster.
5. In the Server secret field enter the RADIUS shared secret.
6. Click Save to save the configuration.

Always On VPN with Azure Gateway

VPN Client Configuration

Perform the following steps to configure a Windows 10 VPN client to connect to the Azure VPN gateway.

Download VPN Configuration

1. Click Point-to-site configuration.
2. Click Download VPN client.
3. Select EAPMSCHAv2 (yes, that’s correct even if EAP-TLS will be used!)
4. Click Download.
5. Open the downloaded zip file and extract the VpnSettings.XML file from the Generic folder.
6. Copy the FQDN in the VpnServer element in VpnSettings.XML. This is the FQDN that will be used in the template VPN connection and later in ProfileXML.

Always On VPN with Azure Gateway

Create a Test VPN Connection

On a Windows 10 device create a test VPN profile using the VPN server address copied previously. Configure EAP settings to match those configured on the NPS server and test connectivity.

Create an Always On VPN Connection

Once the VPN has been validated using the test profile created previously, the VPN server and EAP configuration from the test profile can be used to create the Always On VPN profile for publishing using Intune, SCCM, or PowerShell.

IKEv2 Security Configuration

The default IKEv2 security parameters used by the Azure VPN gateway are better than Windows Server, but the administrator will notice that a weak DH key (1024 bit) is used in phase 1 negotiation.

Always On VPN with Azure Gateway

Use the following PowerShell commands to update the default IKEv2 security parameters to recommended baseline defaults, including 2048-bit keys (DH group 14) and AES-128 for improved performance.

Connect-AzAccount
Select-AzSubscription -SubscriptionName [Azure Subscription Name]

$Gateway = [Gateway Name]
$ResourceGroup = [Resource Group Name]

$IPsecPolicy = New-AzVpnClientIpsecParameter -IpsecEncryption AES128 -IpsecIntegrity SHA256 -SALifeTime 28800 -SADataSize 102400000 -IkeEncryption AES128 -IkeIntegrity SHA256 -DhGroup DHGroup14 -PfsGroup PFS14

Set-AzVpnClientIpsecParameter -VirtualNetworkGatewayName $Gateway -ResourceGroupName $ResourceGroup -VpnClientIPsecParameter $IPsecPolicy

Note: Be sure to update the cryptography settings on the test VPN connection and in ProfileXML for Always On VPN connections to match the new VPN gateway settings. Failing to do so will result in an IPsec policy mismatch error.

Additional Information

Microsoft Azure VPN Gateway Overview

About Microsoft Azure Point-to-Site VPN

Windows 10 Always On VPN IKEv2 Security Configuration

 

 

 

Always On VPN SSTP Load Balancing with Kemp LoadMaster

Always On VPN SSTP Load Balancing with Kemp LoadMaster The Windows Server Routing and Remote Access Service (RRAS) includes support for the Secure Socket Tunneling Protocol (SSTP), which is a Microsoft proprietary VPN protocol that uses SSL/TLS for security and privacy of VPN connections. The advantages of using SSTP for Always On VPN is that it is firewall friendly and ensures consistent remove connectivity even behind highly restrictive firewalls.

Load Balancing SSTP

In a recent post, I described some of the use cases and benefits of SSTP load balancing as well as the offloading of TLS for SSTP VPN connections. Using a load balancer for SSTP VPN connections increases scalability, and offloading TLS for SSTP reduces resource utilization and improves performance for VPN connections. There are positive security benefits too.

Note: A comprehensive reference with detailed, prescriptive guidance for configuring the Kemp LoadMaster for Always On VPN can be found in the Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers. Download this free guide now!

Configuration

Enabling load balancing on the Kemp LoadMaster platform is fundamentally similar to load balancing HTTPS web servers. However, there are a few subtle but important differences.

Health Check

Using a standard TCP port check on the LoadMaster will not accurately reflect the health of the SSTP service running on the RRAS server. In addition, using a simple TCP port check could yield unexpected results. To ensure accurate service status monitoring, it is recommended that HTTP or HTTPS health checks be configured instead.

Real Server Check Method

Open the Kemp LoadMaster management console and follow the steps below to enable HTTP/HTTPS health checks for SSTP.

1. Expand Virtual Services in the navigation pane.
2. Click View/Modify Services.
3. Click Modify on the SSTP VPN virtual service.
4. Expand Real Servers.
5. Select HTTPS Protocol from the Real Server Check Method drop-down list. Alternatively, if TLS offload is enabled select HTTP Protocol.
6. In the URL field enter /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/ and click Set URL.
7. In the Status Codes field enter 401 and click Set Status Codes.
8. Check the box next to Use HTTP/1.1.
9. Select Head from the HTTP Method drop-down list.

Always On VPN SSTP Load Balancing with Kemp LoadMaster

TLS Offload

It is generally recommended that TLS offload not be enabled for SSTP VPN. However, if TLS offload is desired, it is configured in much the same way as a common HTTPS web server. Specific guidance for enabling TLS offload on the Kemp LoadMaster load balancer can be found in the Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers. Details for configuring RRAS and SSTP to support TLS offload can be found here.

Certificates

When enabling TLS offload for SSTP VPN connections it is recommended that the public SSL certificate be installed on the RRAS server, even though TLS processing will be handled on the LoadMaster and HTTP will be used between the LoadMaster and the RRAS server. If installing the public SSL certificate on the RRAS server is not an option, additional configuration will be required. Specifically, TLS offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be found here.

Once the script has been downloaded, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

Example:

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Re-Encryption

When offloading TLS for SSTP VPN connections, all traffic between the LoadMaster and the RRAS server will be sent in the clear using HTTP. In some instances, TLS offload is required only for traffic inspection, not performance gain. In this scenario the LoadMaster will be configured to terminate and then re-encrypt connections to the RRAS server. When terminating TLS on the LoadMaster and re-encrypting connections to the RRAS server is required, the same certificate must be used on both the LoadMaster and the RRAS server. Using different certificates on the RRAS server and the load balancer is not supported.

Additional Information

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

Windows 10 Always On VPN SSTP Load Balancing and SSL Offload

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN ECDSA SSL Certificate Request for SSTP

Windows 10 Always On VPN SSTP Connects then Disconnects

Windows 10 Always On VPN SSTP Load Balancing with F5 BIG-IP

Always On VPN SSTP Load Balancing with F5 BIG-IP

Always On VPN SSTP Load Balancing with F5 BIG-IP The Windows Server Routing and Remote Access Service (RRAS) includes support for the Secure Sockets Tunneling Protocol (SSTP), which is a Microsoft proprietary VPN protocol that uses SSL/TLS for security and privacy of VPN connections. The advantage of using SSTP for Always On VPN is that it is firewall friendly and ensures consistent remote connectivity even behind highly restrictive firewalls.

Load Balancing SSTP

In a recent post, I described some of the use cases and benefits of SSTP load balancing as well as the offloading of TLS for SSTP VPN connections. Using a load balancer for SSTP VPN connections increases scalability, and offloading TLS for SSTP reduces resource utilization and improves performance for VPN connections. There are positive security benefits too.

Configuration

Enabling load balancing for SSTP on the F5 BIG-IP platform is fundamentally similar to load balancing HTTPS web servers. However, there are a few subtle but important differences.

Default Monitor

The default HTTP and HTTPS monitors on the F5 will not accurately reflect the health of the SSTP service running on the RRAS server. In addition, using a simple TCP port monitor could yield unexpected results. To ensure accurate service status monitoring, a new custom monitor must be created to validate the health of the SSTP service.

Custom SSTP Monitor

Open the F5 BIG-IP management console and follow the steps below to create and assign a new custom monitor for SSTP.

Create Monitor

1. In the navigation tree highlight Local Traffic.
2. Click Monitors.
3. Click Create.

Always On VPN SSTP Load Balancing with F5 BIG-IP

4. Enter a descriptive name in the Name field and from the Type drop-down list choose HTTP if TLS offload is enabled, or HTTPS if it is not.
5. In the Send String field enter HEAD /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/ HTTP/1.1\r\nHost:r\nConnection: Close\r\n\r\n.
6. In the Receive String field enter HTTP/1.1 401.
7. Click Finished.

Always On VPN SSTP Load Balancing with F5 BIG-IP

Assign Monitor

1. Below Local Traffic click Pools.
2. Click on the SSTP VPN server pool.
3. In the Health Monitors section select the SSTP VPN health monitor from the Available list and make it Active.
4. Click Update.

Always On VPN SSTP Load Balancing with F5 BIG-IP

CLI Configuration

If you prefer to configure the SSTP VPN monitor using the F5’s Command Line Interface (CLI), you can download the monitor configuration from my GitHub here.

TLS Offload

It is generally recommended that TLS offload not be enabled for SSTP VPN. However, if TLS offload is desired, it is configured in much the same way as a common HTTPS web server. Specific guidance for enabling TLS offload on the F5 BIG-IP can be found here. Details for configuring RRAS and SSTP to support TLS offload can be found here.

Certificates

When enabling TLS offload for SSTP VPN connections it is recommended that the public SSL certificate be installed on the RRAS server, even though TLS processing will be handled on the F5 and HTTP will be used between the F5 and the RRAS server. If installing the public SSL certificate on the RRAS server is not an option, additional configuration will be required. Specifically, TLS offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be found here.

Once the script has been downloaded, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

Example:

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Re-Encryption

When offloading TLS for SSTP VPN connections, all traffic between the F5 and the RRAS server will be sent in the clear using HTTP. In some instances, TLS offload is required only for traffic inspection, not performance gain. In this scenario the F5 will be configured to terminate and then re-encrypt connections to the RRAS server. When terminating TLS on the F5 and re-encrypting connections to the RRAS server is required, the same certificate must be used on both the F5 and the RRAS server. Using different certificates on the RRAS server and the load balancer is not supported.

Additional Information

Windows 10 Always On VPN SSTP Load Balancing and SSL Offload

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN ECDSA SSL Certificate Request for SSTP

Windows 10 Always On VPN SSTP Connects then Disconnects

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

 

Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

Always On VPN Load Balancing Deployment Guide for Kemp Load BalancersI’m pleased announce that Kemp has released their Load Balancing Deployment Guide for Windows 10 Always On VPN. Authored by yours truly, this guide provides detailed, prescriptive guidance for configuring the Kemp LoadMaster load balancer to provide important scalability and eliminate critical points of failure in Always On VPN deployments.

Configuration Guidance

Included in the guide are configuration steps for load balancing VPN servers using IKEv2 and SSTP using Kemp LoadMaster. Crucial details for IKEv2 load balancing as well as SSL offload for SSTP are covered in detail. In addition, the guide includes information about load balancing important supporting infrastructure services such as the Network Policy Server (NPS). Finally, guidance is included for enabling active/passive or active/active load balancing as well as geographic load balancing for multisite Always On VPN deployments.

Always On VPN Load Balancing Deployment Guide for Kemp Load Balancers

Download

You can download the Windows 10 Always On VPN load balancing deployment guide for Kemp LoadMaster load balancers here.

Additional Information

Windows 10 Always On VPN Load Balancing Deployment Guide for Kemp LoadMaster Load Balancers

Windows 10 Always On VPN IKEv2 Load Balancing with the Kemp LoadMaster Load Balancer

 

 

Always On VPN SSTP Load Balancing and SSL Offload

SSL Certificate Considerations for DirectAccess IP-HTTPSThe Windows Server Routing and Remote Access Service (RRAS) is a popular choice for a VPN server to support Windows 10 Always On VPN deployments. One significant advantage RRAS provides is support for the Secure Socket Tunneling Protocol (SSTP). SSTP is a Microsoft proprietary VPN protocol that uses Transport Layer Security (TLS) to ensure privacy between the VPN client and server. The advantage to using a TLS-based transport is that it leverages the standard HTTPS TCP port 443, making it firewall friendly and ensuring ubiquitous remote access even behind highly restrictive firewalls.

Load Balancing SSTP

Load balancing SSTP can be accomplished in much the same way as a load balancing a common web server using HTTPS. The external load balancer is configured with a virtual IP address (VIP) and each VPN server is configured behind it. Session persistence should be configured to use SSL with source IP address persistence as a fallback.

SSL Offload for SSTP

In most cases, simply forwarding encrypted SSTP connections to the VPN server will be sufficient. However, offloading SSL/TLS processing to an Application Delivery Controller (ADC) or load balancer can be beneficial for the following reasons.

Resource Utilization

Enabling TLS offload for SSTP VPN connections can reduce CPU and memory utilization on the VPN server. However, this will likely only be necessary for very busy servers supporting many concurrent connections.

Security

In some cases, the administrator may not be able to install the public SSL certificate on the VPN server. For example, a security policy may exist that restricts SSL certificate installation to dedicated security devices using a Hardware Security Module (HSM). In some cases, it may be desirable to restrict access to high value certificates such as wildcard certificates.

Certificate Management

Often SSL certificates are implemented on load balancers to reduce certificate sprawl and to ease the management and administration burden in the enterprise. By having all enterprise certificates installed only on dedicated security devices, administrators can more effectively monitor and manage SSL certificate lifecycles.

SSTP Configuration for TLS Offload

Configuration changes must be made on the load balancer and the RRAS server to support TLS offload for SSTP.

Load Balancer

Install the public SSL certificate on the load balancer and configure it for TLS termination. Configure the load balancer to then use HTTP for backend server connections. Consult the load balancer vendor’s documentation for configuration guidance.

Load Balancing Always On VPN SSTP Load Balancing with F5 BIG-IP

RRAS Server

If the public SSL certificate is installed on the VPN server, enabling TLS offload for SSTP is simple and straightforward. Follow the steps below to enable TLS offload for SSTP VPN connections.

  1. Open the RRAS management console (rrasmgmt.msc).
  2. Right-click the VPN server and choose Properties.
  3. Select the Security tab.
  4. Check Use HTTP in the SSL Certificate Binding section.
  5. Click Ok and then Yes to restart the Remote Access service.

Always On VPN SSTP Load Balancing and SSL Offload

If the public SSL certificate is not or cannot be installed on the RRAS server, additional configuration will be required. Specifically, SSL offload for SSTP must be configured using the Enable-SSTPOffload PowerShell script, which can be downloaded here.

Once the script has been downloaded and imported, open an elevated PowerShell command window and enter the following command.

Enable-SSTPOffload -CertificateHash [SHA256 Certificate Hash of Public SSL Certificate] -Restart

For example…

Enable-SSTPOffload -CertificateHash “C3AB8FF13720E8AD9047DD39466B3C8974E592C2FA383D4A3960714CAEF0C4F2” -Restart

Re-Encryption

When offloading TLS for SSTP VPN connections, all traffic between the load balancer and the VPN server will be sent in the clear using HTTP. In some scenarios, TLS offload is required only for traffic inspection, not performance gain. When terminating TLS on the load balancer and re-encrypting connections to the VPN server is required, it is only supported if the same certificate is used on both the load balancer and the VPN server.

Additional Information

Windows 10 Always On VPN SSL Certificate Requirements for SSTP

Windows 10 Always On VPN SSL Load Balancing with F5 BIG-IP

Windows 10 Always On VPN IKEv2 and SSTP Fallback

Windows 10 Always On VPN Hands-On Training Classes for 2019

 

Always On VPN and DirectAccess Scripts and Sample Files on GitHub

Always On VPN and DirectAccess Scripts and Sample Files on GitHubIf you’re looking for specialized configuration scripts for Windows 10 Always On VPN, Windows Server Routing and Remote Access Service (RRAS), or DirectAccess then have a look at my GitHub page! There I’ve uploaded a few tools I’ve created (with the help of my good friend Jeff Hicks!) along with some sample ProfileXML files. Here’s a sample of what you’ll find there today.

Always On VPN

This repository includes PowerShell scripts and sample ProfileXML files used for configuring Windows 10 Always On VPN. These scripts have been adopted from those provided by Microsoft and modified to work with a separate XML file. These scripts can be used for local testing and for deploying Always On VPN connections using System Center Configuration Manager (SCCM). The ProfileXML files can be helpful for those administrators looking for real world configuration examples.

https://github.com/richardhicks/aovpn

SstpOffload

This repository includes a PowerShell script to enable TLS offload for Windows Server RRAS Secure Socket Tunneling Protocol (SSTP) VPN connections when the public SSL certificate can’t be installed on the RRAS server. TLS offload for SSTP can be enabled in scenarios where better security, performance, and scalability are desired.

https://github.com/richardhicks/sstpoffload

DirectAccess

This repository includes the PowerShell script Move-DaInboxAccountingDatabase which can be used to move the DirectAccess inbox accounting database files. The default location of the database files is on the C: drive, and many administrators have encountered disk space issues, especially in large scale deployments. This script will relocate the database files to the location of your choice.

https://github.com/richardhicks/directaccess

More to Come!

Be sure to check my GitHub site for more PowerShell script and sample files on a regular basis. Or better yet, give me a follow! I’ll be sure to post more as time goes on. In addition, I’ll be going through my older articles where I’ve provided PowerShell code samples and will include them in the repository too.

Standard Disclaimer

All the sample files and PowerShell scripts I’ve shared on GitHub are provided as-is. Although they’ve been thoroughly tested, I can’t be certain I’ve accommodated every deployment scenario. Please use caution when running these scripts on production machines.

Additional Information

Always On VPN Hands-On Training Classes 2019

Jeff Hicks’ Blog

Always On VPN IKEv2 and SSTP Fallback

Always On VPN IKEv2 and SSTP FallbackA while back I wrote about the various VPN protocols supported for Windows 10 Always On VPN. The two most common are Internet Key Exchange version 2 (IKEv2) and Secure Socket Tunneling Protocol (SSTP). The article covers in detail each protocol’s advantages and disadvantages. To summarize, IKEv2 provides the best security (when configured correctly!) and SSTP is firewall-friendly ensuring ubiquitous access. Ideally an Always On VPN connection will attempt to use the more secure IKEv2 first, then fallback to SSTP only when IKEv2 is unavailable. Unfortunately, Always On VPN connections do not work this way today.

IKEv2 and SSTP

IKEv2 and SSTP are not mutually exclusive. When using Windows Routing and Remote Access Service (RRAS) as the VPN server, both protocols can be configured and enabled for VPN clients. To allow VPN clients to automatically select a protocol, the NativeProtocolType element in ProfileXML can be set to Automatic.

Always On VPN IKEv2 and SSTP Fallback

IKEv2 with SSTP Fallback?

In theory, with the NativeProtocolType set to Automatic, the Windows 10 client would first attempt to establish an IKEv2 connection, then fall back to SSTP if IKEv2 is not available. In practice, this is not the case.

SSTP Preferred over IKEv2

In operation, setting the NativeProtocolType to Automatic results in the Windows 10 client attempting to establish a VPN connection using SSTP first! If the SSTP connection fails, only then will IKEv2 be used. The only scenario in which I can imagine SSTP failing and IKEv2 being successful would be if SSTP is not supported by the VPN server. Sadly, this scenario may result in failed connections due to a bug in the way ProfileXML settings are processed. Details here.

VPN Strategy

The initial VPN protocol selection behavior is dictated by the VpnStrategy setting of the Always On VPN connection in the rasphone.pbk file. This file can be found under C:\Users\[username]\AppData\Roaming\Microsoft\Network\Connections\Pbk. The documentation on the Microsoft website is terribly outdated and does not include the following important VpnStrategy settings pertinent to Windows 10 Always On VPN connections.

  • 5 = Only SSTP is attempted
  • 6 = SSTP is attempted first
  • 7 = Only IKEv2 is attempted
  • 8 = IKEv2 is attempted first
  • 14 = IKEv2 is attempted followed by SSTP

Always On VPN Default Behavior

For Always On VPN, when the NativeProtocolType is set to Automatic in ProfileXML, VpnStrategy is set to 6 by default, which means the connection will attempt to use SSTP first. If it fails, IKEv2 will be attempted.

Always On VPN IKEv2 and SSTP Fallback

If the NativeProtocolType in ProfileXML is set to IKEv2, VpnStrategy is set to 7 and only IKEv2 is used. A connection using SSTP is never attempted.

Workaround

Setting the VpnStrategy to 8 or 14 will force the client to attempt an IKEv2 connection first. However, this setting is dynamically updated by Windows and is subject to change. For example, if an IKEv2 connection fails and SSTP is successful, Windows will then set the VpnStrategy to 6 and all subsequent VPN connection attempts will use SSTP first. Because of this it will be necessary to update the VpnStrategy setting each time prior to establishing a VPN connection. This will require some clever scripting and perhaps automation using a scheduled task based on an event trigger. I will leave that custom configuration as an exercise for the reader. If you’ve developed something to address this challenge, please feel free to share in the comments below. 🙂

Additional Information

Always On VPN Protocol Recommendations for Windows Server RRAS

Always On VPN IKEv2 Security Configuration

Always On VPN Certificate Requirements for IKEv2

Always On VPN IKEv2 Load Balancing with KEMP LoadMaster Load Balancer

Troubleshooting Always On VPN Error Code 0x80092013

Troubleshooting Always On VPN Error Code 0x80092013Windows Server Routing and Remote Access Service (RRAS) is commonly used for Windows 10 Always On VPN deployments because it is easy to configure and manage and it includes Microsoft’s proprietary Secure Socket Tunneling Protocol (SSTP). SSTP is a Transport Layer Security (TLS) VPN protocol that is firewall-friendly and ubiquitously available. However, a common configuration mistake can lead to failed connections.

Error 0x80092013

A Windows 10 Always On VPN client may fail to establish a VPN connection to an RRAS VPN server when using SSTP. The VPN client will return the following error message.

“Can’t connect to Always On VPN. The revocation function was unable to check revocation because the revocation server was offline.”

Troubleshooting Always On VPN Error Code 0x80092013

The event log will also include RasClient event ID 20227 with the following error.

“The user [domain\user] dialed a connection named [connection name] which has failed. The error code returned on failure is -2146885613.”

Troubleshooting Always On VPN Error Code 0x80092013

The Win32 error code –2146885613 converts to hexadecimal 0x80092013, which translates to CRYPT_E_REVOCATION_OFFLINE, indicating that the client was unable to successfully perform a check of the VPN server’s SSL certificate.

Revocation Checking

When the VPN client attempts to establish an SSTP connection to the Windows RRAS VPN, it will check the Certification Revocation List (CRL) using the information provided in the SSL certificate. If the CRL is unreachable for any reason, the client will not complete the connection

Common Cause of Error 0x80092013

Certificate revocation failures for Windows 10 Always On VPN SSTP connections commonly occur when the RRAS VPN server is configured with an SSL certificate issued by an internal certification authority (CA) and the CRL is not publicly available.

Resolving Error 0x80092013

Making the internal CA’s CRL available publicly will of course resolve this error. However, best practice recommendations for the SSTP SSL certificate call for the use of a certificate issued by a public CA. For detailed information about SSL certificate requirements and recommendations, please see Always On VPN SSL Certificate Requirements for SSTP.

Additional Information

Always On VPN SSL Certificate Requirements for SSTP

Always On VPN ECDSA SSL Certificate Request for SSTP

Always On VPN Protocol Recommendations for Windows RRAS

Always On VPN ECDSA SSL Certificate Request for SSTP

As I’ve discussed previously, it is strongly recommended that the TLS certificate used for SSTP be signed using the Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA provides better security and performance compared to RSA certificates for Windows 10 Always On VPN connections using SSTP. See my previous post Always On VPN SSL Certificate Requirements for SSTP for more information.

Certificate Signing Request

To generate a Certificate Signing Request (CSR) using ECDSA to send to a public Certification Authority (CA) using Windows, open the local computer certificate store (certlm.msc) on any Windows server or client and follow the steps below.

Note: Guidance for creating a CSR with ECDSA using OpenSSL can be found at the end of this post.

  1. Expand Certificates – Local Computer.
  2. Right-click the Personal folder and choose All Tasks > Advanced Operations > Create Custom Request.
  3. Click Next.
  4. Select Proceed without enrollment policy.
  5. Click Next.
  6. From the Template drop-down list choose (No template) CNG key.
  7. Click Next.
  8. Click Details.Always On VPN ECDSA SSL Certificate Request for SSTP
  9. Click Properties.
  10. On the General tab enter a name in the Friendly name field.
  11. Click on the Subject tab.
    1. In the Subject name section, from the Type drop-down list choose Common name.
    2. In the Value field enter the VPN server’s public hostname and click Add.
    3. In the Alternative name section, from the Type drop-down list choose DNS.
    4. In the Value field enter the VPN server’s public hostname and click Add.Always On VPN ECDSA SSL Certificate Request for SSTP
  12. Click on the Extensions tab.
    1. Expand Extended Key Usage (application policies).
    2. Highlight Server Authentication.
    3. Click Add.Always On VPN ECDSA SSL Certificate Request for SSTP
  13. Click on the Private Key tab.
    1. Expand Cryptographic Service Provider.
    2. Uncheck RSA,Microsoft Software Key Storage Provider.
    3. Check ECDSA_P256,Microsoft Software Key Storage Provider.Always On VPN ECDSA SSL Certificate Request for SSTP
  14. Expand Key options.
    1. Select the option to Make private key exportable.Always On VPN ECDSA SSL Certificate Request for SSTP
  15. Click Ok.
  16. Click Next.
  17. Enter a name for the file in the File Name field.
  18. Click Finish.

OpenSSL

If the TLS certificate for Always On VPN SSTP will be installed on a load balancer or other security device, creating the CSR using OpenSSL may be required. Use the following commands to generate a CSR with ECDA using OpenSSL.

openssl ecparam -out aovpn_sstp.key -name prime256v1 -genkey
openssl req -new -key aovpn_sstp.key -out aovpn_sstp.csr -sha256

Submit the Request

Once complete, submit the CSR for signing to your favorite public CA. Based on my experience, some CAs are easier to obtain ECDSA-signed certificates than other. Today, Digicert seems to be one of the better public CAs for obtaining EC TLS certificates.

Complete the Request

Once the CA has issued the certificate, import the certificate in to the local computer certificate store on the same client or server where the original CSR was created. The certificate can then be exported and imported on additional VPN servers, if required.

Additional Information

Always On VPN SSL Certificate Requirements for SSTP

Always On VPN Protocol Recommendations for RRAS

 

 

Always On VPN SSL Certificate Requirements for SSTP

Always On VPN Certificate Requirements for SSTPThe Windows Server 2016 Routing and Remote Access Service (RRAS) is commonly deployed as a VPN server for Windows 10 Always On VPN deployments. Using RRAS, Always On VPN administrators can take advantage of Microsoft’s proprietary Secure Socket Tunneling Protocol (SSTP) VPN protocol. SSTP is a Transport Layer Security (TLS) based VPN protocol that uses HTTPS over the standard TCP port 443 to encapsulate and encrypt communication between the Always On VPN client and the RRAS VPN server. SSTP is a firewall-friendly protocol that ensures ubiquitous remote network connectivity. Although IKEv2 is the protocol of choice when the highest level of security is required for VPN connections, SSTP can still provide very good security when implementation best practices are followed.

SSTP Certificate

Since SSTP uses HTTPS for transport, a common SSL certificate must be installed in the Local Computer/Personal/Certificates store on the RRAS VPN server. The certificate must include the Server Authentication Enhanced Key Usage (EKU) at a minimum. Often SSL certificates include both the Server Authentication and Client Authentication EKUs, but the Client Authentication EKU is not strictly required. The subject name on the certificate, or at least one of the Subject Alternative Name entries, must match the public hostname used by VPN clients to connect to the VPN server. Multi-SAN (sometimes referred to as UC certificates) and wildcard certificates are supported.

Always On VPN Certificate Requirements for SSTP

Certification Authority

It is recommended that the SSL certificate used for SSTP be issued by a public Certification Authority (CA). Public CAs typically have their Certificate Revocation Lists (CRLs) hosted on robust, highly available infrastructure. This reduces the chance of failed VPN connection attempts caused by the CRL being offline or unreachable.

Using an SSL certificate issued by an internal, private CA is supported if the CRL for the internal PKI is publicly available.

Key Type

RSA is the most common key type used for SSL certificates. However, Elliptic Curve Cryptography (ECC) keys offer better security and performance, so it is recommended that the SSTP SSL certificate be created using an ECC key instead.

Always On VPN Certificate Requirements for SSTP

To use an ECC key, be sure to specify the use of a Cryptographic Next Generation (CNG) key and select the ECDSA_P256 Microsoft Software Key Storage Provider (CSP) (or greater) when creating the Certificate Signing Request (CSR) for the SSTP SSL certificate.

Always On VPN Certificate Requirements for SSTP

Most public CAs will support certificate signing using ECC and Elliptic Curve Digital Signature Algorithm (ECDSA). If yours does not, find a better CA. 😉

Forward Secrecy

Forward secrecy (sometimes referred to as perfect forward secrecy, or PFS) ensures that session keys can’t be compromised even if the server’s private key is compromised. Using forward secrecy for SSTP is crucial to ensuring the highest levels of security for VPN connections.

To enforce the use of forward secrecy, the TLS configuration on the VPN server should be prioritized to prefer cipher suites with Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) key exchange.

Authenticated Encryption

Authenticated encryption (AE) and authenticated encryption with associated data (AEAD) is a form of encryption that provides better data protection and integrity compared to older block or stream ciphers such as CBC or RC4.

To enforce the use of authenticated encryption, the TLS configuration on the VPN server should be prioritized to prefer cipher suites that support Galois/Counter Mode (GCM) block ciphers.

Important Note: In Windows Server 2016, GCM ciphers can be used with both RSA and ECC certificates. However, in Windows Server 2012 R2 GCM ciphers can only be used when an ECC certificate is used.

SSL Offload

Offloading SSL to a load balancer or application delivery controller (ADC) can be enabled to improve scalability and performance for SSTP VPN connections. I will cover SSL offload for SSTP in detail in a future post.

Summary

SSTP can provide good security for VPN connections when implementation and security best practices are followed. For optimum security, use an SSL certificate with an EC key and optimize the TLS configuration to use forward secrecy and authenticated cipher suites.

Additional Information

Always On VPN ECDSA SSL Certificate Request for SSTP

Always On VPN and Windows Server Routing and Remote Access Service (RRAS)

Always On VPN Protocol Recommendations for Windows Server RRAS

Always On VPN Certificate Requirements for IKEv2

3 Important Advantages of Always On VPN over DirectAccess

Microsoft SSTP Specification on MSDN

%d bloggers like this: