Always On VPN Options for Azure Deployments

Always On VPN Options for Azure DeploymentsOrganizations everywhere are rapidly adopting Microsoft Azure public cloud infrastructure to extend or replace their existing datacenter. As traditional on-premises workloads are migrated to the cloud, customers are looking for options to host VPN services there as well.

Windows Server

Windows Server with the Routing and Remote Access Service (RRAS) installed is a popular choice for on-premises Always On VPN deployments. Intuitively it would make sense to deploy Windows Server and RRAS in Azure as well. However, at the time of this writing, RRAS is not a supported workload on Windows Server in Azure.

Always On VPN Options for Azure Deployments

Reference: https://support.microsoft.com/en-us/help/2721672/microsoft-server-software-support-for-microsoft-azure-virtual-machines/

Although explicitly unsupported, it is possible to deploy Windows Server and RRAS in Azure for Always On VPN. In my experience it works well and can be an option for organizations willing to forgo formal support by Microsoft.

Azure Gateway

Options for supporting Always On VPN connections using native Azure VPN infrastructure depend on the type of VPN gateway chosen.

VPN Gateway

The Azure VPN Gateway can be configured to support client-based (point-to-site) VPN. With some additional configuration it can be used to support Windows 10 Always On VPN deployments. Azure VPN gateway supports both IKEv2 and SSTP VPN protocols for client connections. The Azure VPN gateway has some limitations though. Consider the following:

  • A route-based VPN gateway is required
  • A maximum of 1000 concurrent IKEv2 connections are supported when using the VpnGw3 or VpnGw3AZ SKUs (2000 supported in active/active mode)
  • A maximum of 128 concurrent SSTP connections are supported on all gateway SKUs (256 supported in active/active mode)

Virtual WAN

Azure Virtual WAN is the future of remote connectivity for Azure. It includes support for client-based VPN (currently in public preview at the time of this writing), but only supports IKEv2 and OpenVPN VPN protocols for client connections. SSTP is not supported at all. Further, OpenVPN is not supported for Windows 10 Always On VPN, leaving IKEv2 as the only option, which poses some potential operational challenges. Virtual WAN offer much better scalability though, supporting up to 10,000 concurrent client-based VPN connections.

Virtual Appliance

The most supportable option for hosting VPN services in Azure for Windows 10 Always On VPN is to deploy a third-party Network Virtual Appliance (NVA). They are available from a variety of vendors including Cisco, Check Point, Palo Alto Networks, Fortinet, and many others. To support Windows 10 Always On VPN, the NVA vendor must either support IKEv2 for client-based VPN connections or have a Universal Windows Platform (UWP) VPN plug-in client available from the Microsoft store. Click here to learn more about Always On VPN and third-party VPN devices.

Note: Be careful when choosing an NVA as some vendors support IKEv2 only for site-to-site VPN, but not client-based VPN!

Hybrid Deployments

For organizations with hybrid cloud deployments (infrastructure hosted on-premises and in Azure), there are several options for choosing the best location to deploy VPN services. In general, it is recommended that client VPN connections be established nearest the resources accessed by remote clients. However, having VPN servers hosted both on-premises and in Azure is fully supported. In this scenario Azure Traffic Manager can be configured to intelligently route VPN connections for remote clients.

NetMotion Mobility

The NetMotion Mobility purpose-built enterprise VPN is a popular replacement for Microsoft DirectAccess. It is also an excellent alternative for enterprise organizations considering a migration to Always On VPN. It is a software-based solution that can be deployed on Windows Server and is fully supported running in Microsoft Azure. It offers many advanced features and capabilities not included in other remote access solutions.

Summary

Administrators have many options for deploying VPN servers in Azure to support Windows 10 Always On VPN. Windows Server and RRAS is the simplest and most cost-effective option, but it is not formally supported by Microsoft. Azure VPN gateway is an interesting alternative but lacks enough capacity for larger deployments. Azure Virtual WAN is another option but has limited protocol support. Deploying an NVA is a good choice, and NetMotion Mobility is an excellent alternative to both DirectAccess and Always On VPN that is software-based and fully supported in Azure.

Additional Information

Windows 10 Always On VPN and Third-Party VPN Devices

Windows 10 Always On VPN and Windows Server Routing and Remote Access Service (RRAS)

Windows 10 Always On VPN IKEv2 Features and Limitations

Windows 10 Always On VPN Multisite with Azure Traffic Manager

Comparing DirectAccess and NetMotion Mobility

Deploying NetMotion Mobility in Microsoft Azure

 

Renew DirectAccess Self-Signed Certificates

Renew DirectAccess Self-Signed CertificatesWhen DirectAccess is deployed using the Getting Started Wizard (GSW), sometimes referred to as the “simplified deployment” method, self-signed certificates are created during the installation and used for the IP-HTTPS IPv6 transition technology, the Network Location Server (NLS), and for RADIUS secret encryption.

Renew DirectAccess Self-Signed Certificates

Certificate Expiration

These self-signed certificates expire 5 years after they are created, which means many DirectAccess administrators who have used this deployment option will need to renew these certificates at some point in the future. Unfortunately, there’s no published guidance from Microsoft on how to accomplish this. However, the process is simple enough using PowerShell and the New-SelfSignedCertificate cmdlet.

PowerShell Script

Open an elevated PowerShell command window and run the following commands to renew the DirectAccess self-signed certificates.

# // Clone and install IP-HTTPS certificate

$iphttpscert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq ((Get-RemoteAccess).SslCertificate | Select-Object -ExpandProperty Thumbprint))
$newcert = New-SelfSignedCertificate -CloneCert $iphttpscert -FriendlyName “DirectAccess-IPHTTPS” | Select-Object -ExpandProperty Thumbprint
$cert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq $newcert)
Set-RemoteAccess -SslCertificate $cert -PassThru

# // Clone and install NLS certificate

$nlscert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq ((Get-RemoteAccess).NlsCertificate | Select-Object -ExpandProperty Thumbprint))
$newcert = New-SelfSignedCertificate -CloneCert $nlscert -FriendlyName “DirectAccess-NLS” | Select-Object -ExpandProperty Thumbprint
$cert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Thumbprint -eq $newcert)
Set-DANetworkLocationServer -NLSOnDAServer -Certificate $cert

# // Clone RADIUS encryption certificate

$cert = (Get-ChildItem -Path Cert:\LocalMachine\My\ | Where-Object Subject -like “*radius-encrypt*”)
New-SelfSignedCertificate -CloneCert $cert -FriendlyName “Certificate issued by Remote Access for RADIUS shared secrets”

Script on GitHub

I’ve also published this script on GitHub. You can download Renew-DaSelfSignedCertificates.ps1 here.

Important Considerations

When the IP-HTTPS and NLS scripts above are executed, DirectAccess clients outside will be immediately disconnected and will be unable to reconnect until they update group policy (the RADIUS encryption certificate can be updated without impacting users). This will require connecting to the internal network locally or remotely using another VPN solution. In addition, internal clients that are not online when this change is made will be unable to access internal resources by name until they update group policy. If this happens, delete the Name Resolution Policy Table (NRPT) on the client using the following PowerShell command and reboot to restore connectivity.

Get-Item -Path “HKLM:\SOFTWARE\Policies\Microsoft\Windows NT\DNSClient\DnsPolicyConfig” | Remove-Item -Confirm:$false

Additional Information

PowerShell Recommended Reading for DirectAccess Administrators

Top 5 DirectAccess Troubleshooting PowerShell Commands

 

Always On VPN Training at TechMentor Redmond 2019

TechMentor Redmond 2019I’m pleased to announce that I’ll be delivering two technical training sessions at this year’s TechMentor Redmond event. This event takes place on the Microsoft campus in Redmond, WA August 5-9, 2019. I’ll be presenting two sessions on Thursday, August 8. They are:

TH16 – Wireshark Essentials: Your First Day with Wireshark

During this session you will learn essential techniques for optimizing packet analysis using Wireshark. Topics will include filter and display tips, workspace oganization, using shortcuts for common tools, and configuring Wireshark profiles. I’ll also touch upon some advanced techniques such as graphing and geography database integration.

TH20 – Always On VPN: The Good, the Bad, and the Ugly!

During this session you will gain a full understanding of Always On VPN including and how it compares with its predecessor, DirectAccess. I’ll share detailed information about this new technology, and how it best fits in to your organizations mobility strategy. Always On VPN has some important advantages over DirectAccess, and some challenging drawbacks. I’ll explain everything good, bad, and even the ugly.

TechMentor Redmond 2019

 

Don’t miss out on this fantastic event. Register now to take advantage of early bird savings, which end June 7. Hope to see you there!

Always On VPN and Third Party VPN Devices

Always On VPN and Third Party VPN DevicesOne of the most important advantages Windows 10 Always On VPN has over DirectAccess is infrastructure independence. That is, Always On VPN does not rely exclusively on a Windows Server infrastructure to support Always On VPN connections. Always On VPN will work with many third-party firewalls and VPN devices, as long as they meet some basic requirements.

Advantages

Third-party firewalls or VPN devices offer some important advantages over Windows Servers running the Routing and Remote Access Services (RRAS), both in terms of security and performance.

Security

Dedicated security devices (physical or virtual) provide better security than a common Windows server. They commonly run specialized, security-hardened operating systems that are highly secure and resistant to attack. In addition, these solutions typically allow the administrator to define policy to restrict access to internal resources and do so in a centralized way. This is often easier to implement and manage than using traffic filters on the client side. They often include advanced security features such as URL filtering and malware inspection to better protect remote clients. Some solutions include Hardware Security Module (HSM) integration to further enhance security.

Performance

Purpose-built solutions often provide better throughput and performance than do Windows Servers by virtue of their proprietary operating systems. This allows for better network throughput and the ability to support many more connections per device.

Disadvantages

The main drawbacks for using a third-party device are cost and administrative overhead. Third-party solutions must be acquired, for which there is typically a non-trivial cost associated. They often need additional per-user licensing. In addition, many of these solutions require specialized skill sets to implement, manage, and support which could further increase the overall cost of the solution.

Interoperability Requirements

Any firewall or VPN device can be used for Always On VPN as long as they support the Internet Key Exchange version 2 (IKEv2) VPN protocol for remote access connections. Most modern firewalls today support IKEv2, but some (such as the Sophos XG firewall) do not. Check with your vendor to validate support.

Native Client

If the firewall or VPN device supports IKEv2 for remote access connections, the native Windows VPN provider can be used to establish an Always On VPN connection. The native provider is used when the Always On VPN ProfileXML is configured using the NativeProfile element.

Plug-In VPN Client

One crucial drawback to using IKEv2 is that it is commonly blocked by firewalls. Many third-party VPN vendors offer a plug-in client that enables support for TLS-based transport, which is more firewall friendly than IKEv2. Plug-in VPN providers are available in the Microsoft store.

Below is a current list of available third-party VPN plug-in providers for Windows 10. (Updated April 5 to now include Cisco AnyConnect!)

  • Check Point Capsule
  • Cisco AnyConnect
  • F5 Access
  • Fortinet Forticlient
  • Palo Alto GlobalProtect
  • Pulse Secure
  • SonicWall Mobile Connect

Always On VPN and Third-Party VPN Devices

Note: Win32 VPN client applications from third-party vendors are not supported with Windows 10 Always On VPN.

Additional Information

What is the Difference Between DirectAccess and Always On VPN?

5 Things DirectAccess Administrators Should Know about Always On VPN

3 Important Advantages of Always On VPN over DirectAccess

Always On VPN and DirectAccess Scripts and Sample Files on GitHub

Always On VPN and DirectAccess Scripts and Sample Files on GitHubIf you’re looking for specialized configuration scripts for Windows 10 Always On VPN, Windows Server Routing and Remote Access Service (RRAS), or DirectAccess then have a look at my GitHub page! There I’ve uploaded a few tools I’ve created (with the help of my good friend Jeff Hicks!) along with some sample ProfileXML files. Here’s a sample of what you’ll find there today.

Always On VPN

This repository includes PowerShell scripts and sample ProfileXML files used for configuring Windows 10 Always On VPN. These scripts have been adopted from those provided by Microsoft and modified to work with a separate XML file. These scripts can be used for local testing and for deploying Always On VPN connections using System Center Configuration Manager (SCCM). The ProfileXML files can be helpful for those administrators looking for real world configuration examples.

https://github.com/richardhicks/aovpn

SstpOffload

This repository includes a PowerShell script to enable TLS offload for Windows Server RRAS Secure Socket Tunneling Protocol (SSTP) VPN connections when the public SSL certificate can’t be installed on the RRAS server. TLS offload for SSTP can be enabled in scenarios where better security, performance, and scalability are desired.

https://github.com/richardhicks/sstpoffload

DirectAccess

This repository includes the PowerShell script Move-DaInboxAccountingDatabase which can be used to move the DirectAccess inbox accounting database files. The default location of the database files is on the C: drive, and many administrators have encountered disk space issues, especially in large scale deployments. This script will relocate the database files to the location of your choice.

https://github.com/richardhicks/directaccess

More to Come!

Be sure to check my GitHub site for more PowerShell script and sample files on a regular basis. Or better yet, give me a follow! I’ll be sure to post more as time goes on. In addition, I’ll be going through my older articles where I’ve provided PowerShell code samples and will include them in the repository too.

Standard Disclaimer

All the sample files and PowerShell scripts I’ve shared on GitHub are provided as-is. Although they’ve been thoroughly tested, I can’t be certain I’ve accommodated every deployment scenario. Please use caution when running these scripts on production machines.

Additional Information

Always On VPN Hands-On Training Classes 2019

Jeff Hicks’ Blog

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

After installing and configuring DirectAccess in Windows Server 2019 you may encounter an error message indicating that IP-HTTPS is not working properly. Looking at the Operations Status overview in the Dashboard of the Remote Access Management console shows that the IP-HTTPS interface is in error.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

IP-HTTPS Route Error

Viewing the detailed Operations Status shows the following error message.

Error: The IP-HTTPS route does not have published property enabled.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Missing Route

Looking at the routing table on the DirectAccess server reveals that a route to the client IPv6 prefix is indeed missing.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Resolution

To resolve this error message, add the client IPv6 route to the DirectAccess server’s routing table and publish it. This is accomplished by running the following PowerShell commands on the DirectAccess server.

$IPv6prefix = (Get-RemoteAccess).ClientIPv6Prefix
New-NetRoute -AddressFamily IPv6 -DestinationPrefix $IPv6prefix -InterfaceAlias “Microsoft IP-HTTPS Platform Interface” -Publish Yes

Next, restart the Remote Access Management service (RaMgmtSvc) using the following PowerShell command.

Restart-Service RaMgmtSvc -PassThru

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Once complete, refresh the management console and the IP-HTTPS error message should be resolved and the operations status should state that it is now working properly.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

 

Additional Information

SSL Certificate Conisderations for DirectAccess IP-HTTPS

DirectAccess Expire IP-HTTPS Certificate and Error 0x800b0101

Comparing DirectAccess and NetMotion Mobility – Australia and New Zealand

Australia and New Zealand! Comparing DirectAccess and NetMotion Mobility free live webinar Thursday, November 29 at 10:00AM AEDT. Register here!

DirectAccess on Windows Server 2016 CoreFor many years, DirectAccess has been the gold standard for enterprise remote access. Its seamless and transparent operation improves productivity for mobile workers, and since it is always on, administrators enjoy improved visibility and management for their field-based assets.

As incredible as DirectAccess is, it is not without its limitations. For example, DirectAccess works only with Windows Enterprise edition clients that are joined to the domain. Professional Edition and non-domain joined machines are not supported. It also lacks many of the security features enterprise organizations require, such as device health checks and granular network access. In addition, DirectAccess communication is complex, with many different layers of encapsulation, authentication, and encryption. High protocol overhead can lead to poor performance over high latency or low bandwidth connections.

NetMotion Mobility as an Alternative to DirectAccessNetMotion Mobility is a secure remote access solution that is an excellent alternative to DirectAccess. It provides the same seamless, transparent, always on remote connectivity that DirectAccess provides, while at the same time offering much more in terms of features and capabilities. It supports a much broader range of clients, includes native Network Access Control (NAC) and application filtering, and offers enhanced performance.

To learn more about NetMotion Mobility, join me on Thursday, November 29 at 10:00AM AEDT (UTC +11) for a free live webinar with NetMotion. I’ll provide an overview of NetMotion Mobility and how it compares with DirectAccess. I’ll also demonstrate how it can help overcome some of the inherent limitations of DirectAccess too. Register today!

DirectAccess and NetMotion Mobility Webinar

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803PowerShell is an essential tool for Windows administrators for configuration, task automation, monitoring, reporting, and problem resolution. When troubleshooting DirectAccess connectivity using the IP-HTTPS IPv6 transition technology, the Get-NetIPHttpsConfiguration and Get-NetIPHttpsState PowerShell commands are important for assessing the configuration and current state of the IP-HTTPS connection. When DirectAccess connectivity fails, these are some of the first commands an administrator will use to identify and resolve the issue.

Get-NetIPHttpsState

Get-NetIPHttpsState is especially helpful when IP-HTTPS connectivity fails because it returns an error code and interface status information that can provide clues as to why the connection was not completed successfully.

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

No Output in 1803

Beginning with Windows 10 1803, the DirectAccess administrator will notice that Get-NetIPHttpsState returns no data. The output of Get-NetIPHttpsState is blank.

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

Changes in 1803

As it turns out, this is a bug first introduced in Windows 10 1803 that is the result of a fundamental change in the way in which the IP-HTTPS interface is implemented in Windows. As of this writing, the bug has not been addressed in Windows 10 1803 or 1809.

Workaround

The good news is that there’s an easy workaround for this. Instead of using Get-NetIPHttpsState, the administrator can retrieve essential information about the IP-HTTPS interface using the following netsh command.

netsh interface httpstunnel show interface

DirectAccess Get-NetIPHttpsState Fails on Windows 10 1803

Additional Information

SSL Certificate Considerations for DirectAccess IP-HTTPS 

Troubleshooting DirectAccess IP-HTTPS Error Code 0x800b0109

Troubleshooting DirectAccess IP-HTTPS Error Code 0x80090326

Troubleshooting DirectAccess IP-HTTPS Error Code 0x90320

Troubleshooting DirectAccess IP-HTTPS Error Code 0x2af9

Troubleshooting DirectAccess IP-HTTPS Error Code 0x800b0101

Always On VPN Device Tunnel Missing in Windows 10 UI

Always On VPN Device Tunnel Missing in Windows 10 UIUnlike DirectAccess, Always On VPN connections are provisioned to the user, not the machine. Beginning with Windows 10 release 1709 Microsoft introduced the device tunnel option to provide feature parity with DirectAccess. The device tunnel provides pre-logon network connectivity to support important deployment scenarios such as logging on without cached credentials and unattended remote systems management.

Device Tunnel Configuration

Guidance for creating and deploying a device tunnel connection can be found here. It’s important to note that the device tunnel is always on by default. Also, there can only be a single device tunnel configured per device. You must remove an existing device tunnel before configuring a new one.

Known Issues

After configuring a Windows 10 Always On VPN device tunnel the administrator may notice two anomalies. First, the device tunnel is missing in the Windows UI after it is created. Second, viewing the status of the device tunnel connection using PowerShell indicates the connection is “disconnected” even though it is connected.

Device Tunnel Missing

As you can see below, event though both a device and user tunnel have been provisioned, the Windows UI reports only a single Always On VPN connection, that being the user connection.

Always On VPN Device Tunnel Missing in Windows 10 UI

However, the device tunnel does appear in the Network Connections control panel applet (ncpa.cpl), as shown here.

Always On VPN Device Tunnel Missing in Windows 10 UI

This is expected and by design. The device tunnel is not displayed to the user in the Windows UI as it is provisioned to the machine, not the user. It appears on the Control Panel because the applet is capable of enumerating both user and system connections.

Device Tunnel Disconnected

The status of the Windows 10 Always On VPN device tunnel connection can be viewed by running the Get-VpnConnection -AllUserConnection PowerShell command. However, at the time of this writing, PowerShell always reports the connection status as “Disconnected”. This appears to be a bug; one which Microsoft is hopefully working to address.

Always On VPN Device Tunnel Missing in Windows 10 UI

Summary

The Windows 10 Always On VPN device tunnel option allows administrators to enable scenarios previously supported with DirectAccess, including logging on without cached credentials and unattended remote support. Not all deployments require a device tunnel, but it is an important option available to administrators to address specific use cases.

Additional Information

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN RasMan Device Tunnel Failure

Deleting a Windows 10 Always On VPN Device Tunnel

 

Comparing DirectAccess and NetMotion Mobility Webinar – October 2018

CORRECTION: This webinar will take place 14:00 BST on Thursday, 25 October.

DirectAccess on Windows Server 2016 CoreFor many years, DirectAccess has been the gold standard for enterprise remote access. Its seamless and transparent operation improves productivity for mobile workers, and since it is always on, administrators enjoy improved visibility and management for their field-based assets.

As incredible as DirectAccess is, it is not without its limitations. For example, DirectAccess works only with Windows Enterprise edition clients that are joined to the domain. Professional Edition and non-domain joined machines are not supported. It also lacks many of the security features enterprise organizations require, such as device health checks and granular network access. In addition, DirectAccess communication is complex, with many different layers of encapsulation, authentication, and encryption. High protocol overhead can lead to poor performance over high latency or low bandwidth connections.

NetMotion Mobility as an Alternative to DirectAccessNetMotion Mobility is a secure remote access solution that is an excellent alternative to DirectAccess. It provides the same seamless, transparent, always on remote connectivity that DirectAccess provides, while at the same time offering much more in terms of features and capabilities. It supports a much broader range of clients, includes native Network Access Control (NAC) and application filtering, and offers enhanced performance.

To learn more about NetMotion Mobility, join me on Thursday, 25 October at 14:00 BST for a free live webinar with NetMotion. I’ll provide an overview of NetMotion Mobility and how it compares with DirectAccess. I’ll also demonstrate how it can help overcome some of the inherent limitations of DirectAccess too. Register today!

DirectAccess and NetMotion Mobility Webinar

%d bloggers like this: