Always On VPN Client IP Address Assignment Methods

When Always On VPN clients connect to the VPN server, they must be assigned an IP address to facilitate network communication. When using Windows Server and Routing and Remote Access Service (RRAS) for VPN services, administrators must choose between Dynamic Host Configuration Protocol (DHCP) and static address pool assignment methods.

DHCP

DHCP is a quick and easy way to handle VPN client IP address assignment. However, there are some drawbacks and limitations associated with this option. Consider the following.

Allocation

DHCP for Always On VPN clients does not work as you might expect. For example, when a VPN client connects, it does not obtain its IP address directly from the DHCP server. Instead, the VPN server leases a block of IP addresses from the DHCP server and manages those on behalf of its clients. On the DHCP server, you will see the Unique ID column of these IP address leases indicating RAS.

Address Block Size

After configuring the VPN server to use DHCP VPN client IP address assignment, the VPN server will automatically lease a block of ten IP addresses from a DHCP server. When this initial block of ten IP addresses is exhausted, the VPN server will lease another block of ten IP addresses. Administrators can increase the size of the requested address block by creating the following registry key on each VPN server.

Key: HKLM\SYSTEM\CurrentControlSet\Services\RemoteAccess\Parameters\IP
Value: InitialAddressPoolSize
Type: DWORD
Data: <size of DHCP pool request>

Alternatively, administrators can download Update-VpnServerDhcpPoolSize.ps1 from my GitHub repository and run it on each VPN server to increase the size of the initial DHCP address pool request.

DHCP Options

The VPN server discards all DHCP option information returned by the DHCP server. The VPN server uses only the IP address from the DHCP lease. The client is unaware of any other information in the DHCP lease.

Subnet

By default, the VPN server will only request DHCP addresses from a scope that matches the same subnet as the IP address assigned to the VPN server’s network adapter. If the VPN server has more than one network interface, it will send DHCP requests from the network interface listed on the Adapter drop-down list, as shown here.

Note: This option is only available on servers configured with multiple network interfaces. Also, if the value is set to Allow RAS to select adapter, it is best to specifically define the network interface where DHCP and DNS requests are made.

Scope Size

When using the DHCP assignment method, ensure the DHCP scope contains enough IP addresses to support the number of concurrent connections expected on all VPN servers.

IPv6

DHCPv6 is not supported on RRAS for VPN client IP address assignment. The only option for IPv6 is prefix assignment.

RRAS in Azure

DHCP is not supported when deploying RRAS in Azure. Administrators deploying RRAS in Azure to support Always On VPN must use the static address pool assignment method. More details here.

Known Issues

When using DHCP with Windows Server 2019 RRAS servers, a known issue prevents this from working correctly. Administrators can download Update-VpnServerDhcpPrivileges.ps1 from my GitHub repository and run it on each VPN server to ensure proper DHCP operation.

Increased Complexity

Since the VPN server leases IP addresses on behalf of clients and discards DHCP option information included in the lease, there’s no real benefit to using DHCP. Using DHCP only adds complexity and introduces another dependency, making the solution more brittle and difficult to manage. Using the static address pool assignment method is a better choice.

Static Pool

Implementation best practices dictate using the static address pool assignment method instead of DHCP. The following is guidance for configuring RRAS to support the static address pool option for VPN client IP address assignment.

Unique Subnet

Using a unique IP subnet is best when using the static address pool assignment method. However, this also requires configuring internal network routing to return traffic for that subnet to the individual VPN server where that subnet is assigned. Each server must have a unique IP address pool assigned. Define static address pools using subnet boundaries when configuring multiple VPN servers. Assigning IP address pools along subnet boundaries simplifies internal network routing configuration. Ensure that assigned IP address pool subnets are large enough to accommodate the total number of concurrent connections expected on each server. Be sure to overprovision to handle failover scenarios.

Same Subnet

Alternatively, administrators can assign VPN client IP addresses from the same subnet as the VPN server’s network interface. Assigning VPN client IP addresses from the same subnet as the VPN server eliminates the need for any internal network routing configuration, simplifying deployment. However, server subnets are often small and may not have enough IP address space to support numerous concurrent VPN connections. Be sure to plan accordingly.

Static IP Addresses

It is possible to assign a static IP address to an individual user. However, assigning a static IP address to a specific device is not. I will discuss static IP address assignments for Always On VPN clients in a future blog post.

Other Limitations

Here are some additional things to consider when creating a VPN client IP addressing strategy.

DNS

Always On VPN clients can be configured to register their IP address in DNS. However, the VPN client configuration controls this setting. The DHCP server does not register IP addresses in DNS when using DHCP. The client registers its IP address in DNS directly after it connects. In addition, a VPN client will receive a different IP address each time it connects to the VPN server. DNS propagation can delay hostname resolution on-premises for remote-connected VPN clients.

Selective Addressing

Regardless of which assignment method is selected, assigning different IP addresses to different types of connections is not possible. For example, a common ask is to assign user connections from one IP address pool and device connections from another. The only option to support this is to use different servers for each type of connection.

Summary

The best practice for IPv4 VPN client addressing is to use the static address pool method with a unique IPv4 subnet per server. Using static address pool assignment provides the most flexible configuration options and eliminates the dependency on internal services, making the solution more resilient and easier to manage. A unique address pool per server ensures that a large enough subnet can be defined to support the expected number of concurrent connections, regardless of the subnet size the VPN server is assigned to. Also, a unique IP subnet for VPN clients makes configuring internal firewall rules to control VPN client access easier.

Additional Information

Always On VPN and IPv6

Always On VPN Client DNS Server Configuration

Always On VPN Routing Configuration

Always On VPN RRAS Internal Interface Non-Operational

3 Important Advantages of Always On VPN over DirectAccess

3 Important Advantages of Always On VPN over DirectAccess Windows 10 Always On VPN hands-on training classes now forming. Details here.

Windows 10 Always On VPN provides seamless and transparent, always on remote network access similar to DirectAccess. The mechanics of how it is delivered and managed are fundamentally different, as I discussed here. Some of these changes will no doubt present challenges to our way of thinking, especially in the terms of client provisioning. However, Always On VPN brings along with it some important and significant advantages too.

No More NLS

A Network Location Server (NLS) is used for inside/outside detection by DirectAccess clients. By design, the NLS is reachable by DirectAccess machines only when they are on the internal network. NLS availability is crucial. If the NLS is offline or unreachable for any reason at all, DirectAccess clients on the internal network will mistakenly believe they are outside the network. In this scenario, the client will attempt to establish a DirectAccess connection even though it is inside. This often fails, leaving the DirectAccess client in a state where it cannot connect to any internal resources by name until the NLS is brought back online.

Always On VPN eliminates the frailty of NLS by using the DNS connection suffix for trusted network detection. When a network connection is established, an Always On VPN connection will not be established if the DNS connection suffix matches what the administrator has defined as the internal trusted network.

Full Support for IPv4

DirectAccess uses IPv6 exclusively for communication between remote DirectAccess clients and the DirectAccess server. IPv6 translation technologies allow for communication to internal IPv4 hosts. While this works for the vast majority of scenarios, there are still many challenges with applications that do not support IPv6.

Always On VPN supports both IPv4 and IPv6, so application incompatibility issues will be a thing of the past! With full support for IPv4, the need for IPv6 transition and translation technologies is eliminated. This reduces protocol overhead and improves network performance.

Infrastructure Independent

3 Important Advantages of Always On VPN over DirectAccess Windows servers are required to implement DirectAccess. Always On VPN can be implemented using Windows servers as well, but it isn’t a hard requirement. Always On VPN is implemented entirely on the Windows 10 client, which means any third-party VPN device can be used on the back end, including Cisco, Checkpoint, Juniper, Palo Alto, Fortinet, SonicWALL, F5, strongSwan, and others! This provides tremendous deployment flexibility, making it possible to mix and match backend infrastructure if required. For example, a Windows RRAS VPN server with Palo Alto and SonicWALL firewalls could all be implemented at the same time (using the Windows built-in VPN client). Importantly, making changes to VPN infrastructure is much less impactful and disruptive to clients in the field. VPN devices can be upgraded, replaced, and moved internally without requiring corresponding policy changes on the client.

Additional Information

Always On VPN and the Future of Microsoft DirectAccess 

5 Things DirectAccess Administrators Should Know about Always On VPN 

Contact Me

Have questions about Windows 10 Always On VPN? Interested in learning more about this new solution? Fill out the form below and I’ll get in touch with you.

Always On VPN and the Future of Microsoft DirectAccess

Windows 10 Always On VPN hands-on training classes now forming. Details here.

Since the introduction of Windows Server 2012 in September of 2012, no new features or functionality have been added to DirectAccess. In Windows Server 2016, the only real change aside from bug fixes for DirectAccess is the removal of Network Access Protection (NAP) integration support.

Always On VPN and the Future of Microsoft DirectAccessFigure 1. Remote Access Setup wizard with NAP integration option in Windows Server 2012/R2.

Always On VPN and the Future of Microsoft DirectAccess

Figure 2. Remote Access Setup wizard without NAP integration option in Windows Server 2016.

DirectAccess Roadmap

It’s clear to see that Microsoft is no longer investing in DirectAccess, and in fact their field sales teams have been communicating this to customers for quite some time now. Microsoft has been actively encouraging organizations who are considering a DirectAccess solution to instead implement client-based VPN with Windows 10.

Always On VPN

New features introduced in the Windows 10 Anniversary Update allow IT administrators to configure automatic VPN connection profiles. This Always On VPN connection provides a DirectAccess-like experience using traditional remote access VPN protocols such as IKEv2, SSTP, and L2TP/IPsec. It comes with some additional benefits as well.

  • Conditional access and device compliance with system health checks
  • Windows Hello for Business and Azure multifactor authentication
  • Windows Information Protection (WIP) integration
  • Traffic filters to restrict VPN network access
  • Application-trigger VPN connections

DirectAccess Deprecated?

There has been rampant speculation that Microsoft plans to deprecate and retire DirectAccess. While that may in fact be true, Microsoft has yet to make a formal end-of-life announcement. There’s no reason DirectAccess and VPN couldn’t co-exist, so it’s not a certainty Microsoft will do this. However, there’s also no need to have multiple remote access solutions, and it is abundantly clear that the future for Microsoft remote access is Always On VPN and not DirectAccess.

Always On VPN and the Future of Microsoft DirectAccess

Source: https://social.technet.microsoft.com/wiki/contents/articles/38546.new-features-for-vpn-in-windows-10-and-windows-server-2016.aspx#Advanced_VPN_Connectivity

Always On VPN Advantages and Disadvantages

Windows 10 Always On VPN has some important advantages over DirectAccess. It has some crucial limitations as well.

Advantages

  • Always On VPN supports non-Enterprise Windows 10 client SKUs (Windows 10 Home and Professional)
  • Always On VPN includes support for granular network access control
  • Always On VPN can use both IPv4 and IPv6
  • Always On VPN is infrastructure independent. In addition to supporting Windows RRAS, any third-party network device can be used such as Cisco, Checkpoint, Juniper, Palo Alto, SonicWALL, Fortinet, and many more

Disadvantages

  • Always On VPN works only with Windows 10. It is not supported for Windows 7
  • Always On VPN cannot be managed natively using Active Directory and group policy. It must be configured and managed using Microsoft Intune. Alternatively, Microsoft System Center Configuration Manager (SCCM) or PowerShell can be used.

DirectAccess or Always On VPN?

Should you deploy DirectAccess today or implement Always On VPN with Windows 10 instead? That depends on a number of factors. It’s important to understand that DirectAccess will be fully supported through the lifecycle of Windows Server 2019. If DirectAccess meets your needs today, you can deploy it with confidence that it will still have a long support life. If you have reservations about the future viability of DirectAccess, and if you meet all of the requirements to support Always On VPN with Windows 10, then perhaps that’s a better choice. If you’d like to discuss your remote access options in more detail, fill out the form below and I’ll get in touch with you.

Additional Resources

5 Things DirectAccess Administrators Should Know About Always On VPN

3 Important Advantages of Always On VPN over DirectAccess

NetMotion Mobility as an Alternative to DirectAccess

Windows 10 Always On VPN Hands-On Training Classes