Mastering Certificates with Microsoft Intune August 2025

I’m excited to announce that I will be delivering another edition of the Mastering Certificates with Microsoft Intune course, hosted by ViaMonstra Online Academy. This is a three-day live online training course that takes place August 26-28, 2025. This course dives deep into issuing and managing certificates using Microsoft Intune, covering both on-premises and cloud-based solutions.

Course Overview

This interactive training equips IT professionals with the skills to provision and manage enterprise PKI certificates using Microsoft Intune. It explores Active Directory Certificate Services (AD CS), Microsoft Cloud PKI for Intune, and non-Microsoft solutions, with live demonstrations featuring real-world scenarios.

Key Learning Objectives

Those taking the online training course will learn the following.

  • Certificate Basics: Understand certificate roles and enterprise use cases.
  • Deployment Options: Master Intune certificate deployment (Intune policies, revocation, security) and Microsoft Cloud PKI (licensing, benefits, limitations, BYOCA).
  • Intune Deployment: Learn PKCS and SCEP deployment, security best practices, and troubleshooting.
  • High Availability: Explore strategies for reliable certificate management.

Course Highlights

Here are some key highlights for attendees of the training.

  • Expert-Led: Learn from a veteran IT professional, a Microsoft MVP, with deep PKI and Intune expertise.
  • Interactive Demonstrations: The course includes numerous practical exercises in real-world scenarios.
  • Resources: Access to security best practices and sample scripts for automated configuration.
  • Community: Join a private Facebook group for peer collaboration.
  • Live Q&A: Engage directly with the instructor for a clearer understanding.

Who Should Attend?

This training event is ideal for IT administrators, security professionals, and systems engineers working with Intune, AD CS, or Microsoft Cloud PKI for Intune.

Prerequisites

Those attending the online training course should be familiar with the following.

  • Basic networking knowledge (TCP/IP, DNS).
  • Familiarity with Active Directory, Windows OS, and Intune.
  • Access to an AD CS setup and an Azure subscription with Intune Suite licenses.

Why It Matters

Certificates are vital for secure authentication and communication. This course bridges theory and practice, equipping you to deploy and manage digital certificates effectively in cloud-native environments.

Details

Here is some additional information about the training event.

  • When: August 26-28, 2025 (sessions begin at 9:00 AM CDT).
  • Where: Live online via ViaMonstra Online Academy.
  • Cost: $2,395.00 (Sold separately – not included in All-Access Pass).

Why ViaMonstra?

ViaMonstra delivers top-tier IT training from Microsoft MVPs, focusing on practical, up-to-date skills and fostering a collaborative community.

Take the Next Step

Ready to master certificate management with Microsoft Intune? Register at ViaMonstra Online Academy for the August 2025 Mastering Certificates with Microsoft Intune training course today!

TLS and Microsoft SQL Server 2022

Transport Layer Security (TLS) for SQL Server 2022 has numerous benefits. TLS enhances SQL Server security by providing authentication, encrypting data in transit, ensuring regulatory compliance, and following security best practices. It helps prevent unauthorized access, protects sensitive information, and mitigates interception attacks, making it a critical component of a secure database environment.

Self-Signed Certificates

When installing Microsoft SQL Server 2022 on-premises, a self-signed certificate is automatically created to support Transport Layer Security (TLS) connections to the database. From a security perspective, using unmanaged, self-signed certificates is never a good idea.

Risk

Self-signed certificates are insecure because they are not issued by a trusted Certification Authority (CA), making it impossible to verify the legitimacy of the server. This lack of trust enables attackers to intercept and manipulate data through interception attacks. Additionally, since operating systems do not automatically trust self-signed certificates, users may ignore security warnings, increasing the risk of connecting to malicious or compromised servers.

Enterprise PKI Certificates

For production workloads, security best practices dictate using enterprise PKI-issued and managed certificates, which provide many security benefits.

Authentication

TLS with managed certificates provides a mechanism for server authentication, ensuring that clients connect to a legitimate server and not an impostor. TLS authentication helps mitigate interception attacks where an attacker could potentially impersonate the server. Managed TLS certificates can also be revoked in the event of key compromise.

Data Encryption

Microsoft SQL Server 2022 database servers often store sensitive data, including personal details, financial records, and other confidential business information. TLS ensures that data in transit between the client and the server is encrypted using modern cryptography, which enhances privacy and confidentiality while preventing unauthorized interception and eavesdropping.

Compliance Requirements

Many regulatory frameworks and compliance standards, such as GDPR, HIPAA, or PCI-DSS, require or strongly recommend encrypting data in transit. Enabling TLS on SQL Server helps meet these compliance standards, strengthens internal security protections, and avoids potential penalties.

Security Best Practice

Implementing TLS is considered a fundamental security best practice in network and data communication. It reduces the risk of data breaches and enhances the overall network security posture in the enterprise.

TLS and SQL Server 2022

Microsoft SQL Server 2022 includes critical new options for administrators. The “Force Encryption” and “Force Strict Encryption” flags control how encryption is enforced for client connections, but their behavior and compatibility requirements differ.

Force Encryption

When this setting is enabled, the SQL server will encrypt communication between the client and server using TLS. However, contrary to what the name of the setting implies, it is possible for the server to accept unencrypted connections in some cases. If the client does not support encryption, the connection may still succeed without encryption. Enabling Force Encryption prioritizes encryption but does not strictly enforce it, meaning older clients that do not support encryption can still connect. Administrators can use this setting to ensure backward compatibility for applications that may not support strict encryption policies. However, upgrading applications to support encryption is strongly advised.

Force Strict Encryption

This setting is subtly different than the previous setting. It also ensures that all communication between the client and the server is encrypted without exception. If a client does not support encryption, the connection will be rejected. In addition, this setting enforces enhanced security parameters for the connection, such as certificate validation, more secure TLS cipher suites, and the use of TLS 1.3* when available. Force Strict Encryption is designed for modern security compliance. It is the preferred setting and should be used when all clients are known to support encryption.

* Note: TLS 1.3 is supported with SQL Server 2022 cumulative update 1 or later installed.

Key Differences

The following table summarizes the key differences between Force Encryption and Force Strict Encryption.

Force EncryptionEncourages but does not require encryption. Unencrypted connections may still be allowed.
Force Strict EncryptionRequires encryption for all connections. Clients that do not support encryption will be rejected.

Summary

By securing your Microsoft SQL Server with TLS, you significantly enhance the security, reliability, and trustworthiness of your data management systems. In the next post, I’ll provide detailed step-by-step guidance for enabling and configuring TLS on Microsoft SQL Server 2022 using best security practices.

Additional Information

Step-by-Step Guide: Enable TLS in Microsoft SQL Server 2022

VIDEO: Enable TLS in Microsoft SQL Server 2022

Microsoft SQL Server 2022

Always On VPN and Cloud PKI for Intune Error 853

Microsoft Cloud PKI for Intune is a PKI-as-a-Service offering that allows organizations to issue and manage digital certificates without on-premises infrastructure. Certificates are excellent phishing-resistant credentials that are well-suited for applications requiring strong authentication, such as secure remote access with Always On VPN. However, administrators may encounter errors when attempting to authenticate users or devices using certificates issued by Cloud PKI for Intune.

Error 853

After publishing certificates with Cloud PKI for Intune and configuring the on-premises Always On VPN infrastructure to support this, administrators will find that the Always On VPN connection fails to connect. Attempts to manually start the connection result in the following error message.

“The remote access connection completed, but authentication failed because the certificate that authenticates the client to the server is not valid. Ensure the certificate used for authentication is valid.”

In the event log on the Windows client, you’ll find an event ID 20227 from the RasClient source that includes the following error message.

“The user <domain>\<user> dialed a connection named <VPN connection name> which has failed. The error code returned on failure is 853.”

Error 853 (ERROR_EAP_USER_CERT_INVALID) indicates the user certificate is invalid.

Certificate

Upon further investigation, the certificate shows no issues, is valid, is trusted, and has a private key.

NPS

Looking at the event log on the Network Policy Server (NPS), you’ll find a corresponding event ID 6273 from the Microsoft Windows security auditing source that includes the following error message.

“Network Policy Server denied access to a user.”

Looking at the authentication details section of this event log entry yields the following important clue.

Reason Code: 258
Reason: The revocation function was unable to check revocation for the certificate.

Failed Revocation Check

Since the NPS server indicates that it rejected the authentication request because it could not perform a revocation check, let’s bring the user authentication certificate to the NPS server and perform some tests.

Export Certificate

Open the user certificate store (certmgr.msc) on the client and expand Personal > Certificates. Right-click on the certificate in question and choose All Tasks > Export. Export the certificate only (not the private key) and copy the file to the NPS server.

Verify Certificate

Open a PowerShell or command window on the NPS server and run the following command to validate the certificate.

certutil.exe -verify -urlfetch <path to exported certificate>

For example.

certutil.exe -verify -urlfecth .\rdeckard.cer

The command generates a lot of output, but if you look at the very end of the data stream, you’ll see two interesting items.

  • Revocation check skipped – no revocation information available
  • Leaf certificate revocation check passed

Based on this information the user certificate (the leaf certificate) passed a revocation check. However, it would appear that another certificate in the chain does not include revocation information. Since there is only a root and issuing CA in the chain, and root certificates don’t include revocation information because they are the self-signed root of trust, it would appear that revocation information is missing from the issuing CA certificate.

We can confirm this by scrolling up in the previous command’s output to where the verification of the issuing CA certificate takes place. Here, you’ll see that the issuing CA certificate is missing CDP (CRL Distribution Point) information.

When NPS attempts to validate the certificate and the certificate chain, it expects to find CDP information, which it will use to check if the issuing CA certificate has been revoked. The revocation check fails without this information, and the authentication request is rejected.

Design Error?

Missing CDP information is not unusual for end-entity (leaf) certificates when they are short-lived. An example is Entra ID conditional access certificates, which do not include CDP information by design. However, I expect this information to be listed on an issuing CA certificate. Why it’s not there, I’m not sure. I’ll investigate this in more depth and report on anything I learn that’s new.

Workaround

To move forward using Cloud PKI for Intune certificates with Always On VPN, administrators must implement the following registry setting on all NPS servers handling authentication requests for Always On VPN servers.

Key = HKLM\SYSTEM\CurrentControlSet\Services\RasMan\PPP\EAP\13
Name = IgnoreNoRevocationCheck
Type = DWORD
Value = 1

To implement this change using PowerShell, open an elevated PowerShell command window and run the following command.

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Services\RasMan\PPP\EAP\13\’ -Name IgnoreNoRevocationCheck -PropertyType DWORD -Value 1 -Force

Once complete, restart the NPS server for the changes to take effect.

Additional Information

Cloud PKI for Microsoft Intune

Cloud PKI for Microsoft Intune and Active Directory

Cloud PKI for Microsoft Intune and Certificate Templates

Strong Certificate Mapping for Microsoft Intune PKCS and SCEP Certificates

Troubleshooting Intune Failed PKCS Request

Cloud PKI for Microsoft Intune SCEP URL

Delete A Cloud PKI for Microsoft Intune Certificate Authority

Cloud PKI for Microsoft Intune on RunAs Radio Podcast

Mastering Certificates with Microsoft Intune Online Training