Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShell

Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShellWindows 10 Always On VPN and DirectAccess both provide seamless, transparent, always on remote network access for Windows clients. However, Always On VPN is provisioned to the user, not the machine as it is with DirectAccess. This presents a challenge for deployment scenarios that require the VPN connection to be established before the user logs on. For example, pre-logon connectivity is required to support remote logon without cached credentials. To address this issue and to provide feature parity with DirectAccess, Microsoft introduced support for a device tunnel configuration option beginning with Windows 10 version 1709 (Fall creators update).

Learn Windows 10 Always On VPN today! Register for an upcoming Always On VPN Hands-On Training class. More details here!

Prerequisites

To support an Always On VPN device tunnel, the client computer must be running Windows 10 Enterprise or Education version 1709 (Fall creators update) or later. It must also be domain-joined and have a computer certificate with the Client Authentication Enhanced Key Usage (EKU) issued by the organization’s Public Key Infrastructure (PKI).

Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShell

In addition, only the built-in Windows VPN client is supported for Always On VPN device tunnel. Although Windows 10 Always On VPN user connections can be configured using various third-party VPN clients, they are not supported for use with the device tunnel.

VPN ProfileXML

The Always On VPN device tunnel is provisioned using an XML file. You can download a sample VPN ProfileXML file here. Make any changes required for your environment such as VPN server hostnames, routes, traffic filters, and remote address ranges. Optionally include the trusted network detection code, if required. Do not change the protocol type or authentication methods, as these are required.

Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShell

Reference: https://docs.microsoft.com/en-us/windows-server/remote/remote-access/vpn/vpn-device-tunnel-config#configure-the-vpn-device-tunnel

Once the ProfileXML file is created, it can be deployed using Intune, System Center Configuration Manager (SCCM), or PowerShell. In this post I’ll cover how to configure Windows 10 Always On VPN device tunnel using PowerShell.

Client Configuration

Download the PowerShell script located here and then copy it to the target client computer. The Always On VPN device tunnel must be configured in the context of the local system account. To accomplish this, it will be necessary to use PsExec, one of the PsTools included in the Sysinternals suite of utilities. Download PsExec here, copy it to the target machine, and then run the following command in an elevated PowerShell command window.

PsExec.exe -i -s C:\windows\system32\WindowsPowerShell\v1.0\powershell.exe

Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShell

Another elevated PowerShell window will open, this one now running in the context of the local system account. In this window, navigate to the folder where you copied the PowerShell script and XML file to. Run the PowerShell script and specify the name of the ProfileXML file, as shown below.

VPN_Profile_Device.ps1 -xmlFilePath .\profileXML_device.XML -ProfileName DeviceTunnel

Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShell

To verify creation of the VPN device tunnel, run the following PowerShell command.

Get-VpnConnection -AllUserConnection

Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShell

Note: In Windows 10 releases prior to 1903 the ConnectionStatus will always report Disconnected. This has been fixed in Windows 10 1903.

Server Configuration

If you are using Windows Server 2012 R2 or Windows Server 2016 Routing and Remote Access Service (RRAS) as your VPN server, you must enable machine certificate authentication for VPN connections and define a root certification authority for which incoming VPN connections will be authenticated with. To do this, open an elevated PowerShell command and run the following commands.

$VPNRootCertAuthority = “Common Name of trusted root certification authority”
$RootCACert = (Get-ChildItem -Path cert:LocalMachine\root | Where-Object {$_.Subject -Like “*$VPNRootCertAuthority*” })
Set-VpnAuthProtocol -UserAuthProtocolAccepted Certificate, EAP -RootCertificateNameToAccept $RootCACert -PassThru

Always On VPN Windows 10 Device Tunnel Step-by-Step Configuration using PowerShell

Limitations

Using PowerShell to provision an Always On VPN device tunnel is helpful for initial testing and small pilot deployments, but it does not scale very well. For production deployments it is recommended that Microsoft Intune be used to deploy Always On VPN device tunnel.

Deploy Device Tunnel with Intune

Guidance for deploying an Always On VPN device tunnel using Microsoft Intune can be found here. You can also view the following demonstration video that includes detailed guidance for provisioning the Always On VPN device tunnel using Microsoft Intune.

Summary

Once the Always On VPN device tunnel is configured, the client computer will automatically establish the connection as soon as an active Internet connection is detected. This will enable remote logins for users without cached credentials, and allow administrators to remotely manage Always On VPN clients without requiring a user to be logged on at the time.

Additional Information

Deploy Windows 10 Always On VPN Device Tunnel using Microsoft Intune

VIDEO: Deploying Windows 10 Always On VPN Device Tunnel using Microsoft Intune

Windows 10 Always On VPN Device Tunnel Does Not Connect Automatically

Windows 10 Always On VPN Device Tunnel Does Not Appear in the UI

Windows 10 Always On VPN Hands-On Training

 

 

 

Always On VPN Device Tunnel Configuration Guidance Now Available

Always On VPN Device Tunnel Configuration Guidance Now AvailableWindows 10 Always On VPN hands-on training classes now forming. Details here.

When Always On VPN is configured for Windows 10, the VPN connection is established automatically when the user logs on to their device. This differs fundamentally from DirectAccess, where the connection is established by the machine, before the user logs on. This subtle but important difference has some important ramifications. For example, it means that a user cannot use Always On VPN until they’ve logged on to their device at least once while connected to the corporate network. DirectAccess doesn’t have this limitation, as a connection to an on-premises domain controller is available to authenticate a new user upon first logon.

Device Tunnel Support

To address this shortcoming with Always On VPN, and to provide better feature parity with DirectAccess, Microsoft introduced an update to Windows 10 in the recent Fall Creators update (v1709) that allows for the configuration of a device tunnel for Windows 10 Always On VPN. Once enabled, the device itself can automatically establish a secure remote connection before the user logs on. This enables scenarios such as device provisioning for new remote users without cached credentials. It also enables support for password reset using CTRL+ALT+DEL.

Manage Out

Device tunnel for Windows 10 Always On VPN also enables important manage out scenarios that DirectAccess administrators have come to rely upon. With a device tunnel configured, administrators can initiate connections to remote connected Always On VPN clients to provide remote management and support, without requiring a user to be logged on at the time.

Requirements

To support an Always On VPN device tunnel, the client must be running Windows 10 Enterprise or Education v1709 or later. The computer must be domain-joined and have a machine certificate installed. Device tunnel can only be configured using the built-in Windows 10 VPN client (no support for third-party clients) and the IKEv2 protocol must be used.

Caveat

When configuring a device tunnel, traffic filters can be implemented to restrict communication to only those internal resources required, such as domain controllers, Windows Server Update Services (WSUS) or System Center Configuration Manager (SCCM) servers. However, when traffic filters are used, no inbound traffic to the client is allowed. If manage out is required over the device tunnel, traffic filters cannot be configured. Microsoft expects to remove this limitation in a future update.

Provisioning and Documentation

Configuring and provisioning a Windows 10 Always On VPN device tunnel is similar to the process for the Always On VPN connection itself. A VPN profileXML file is created and then deployed via a Mobile Device Management (MDM) solution such as Microsoft Intune. Optionally, the VPN profileXML can be deployed using SCCM or PowerShell. Additional information about Windows 10 Always On VPN device tunnel configuration, including a sample profileXML and PowerShell script, can be found here.

Additional Resources

Configure a VPN Device Tunnel in Windows 10

Always On VPN and the Future of DirectAccess

5 Things DirectAccess Administrators Should Know about Always On VPN

DirectAccess Manage Out and System Center Configuration Manager (SCCM)

The seamless and transparent nature of DirectAccess makes it wonderfully easy to use. In most cases, it requires no user interaction at all to access internal corporate resources while away from the office. This enables users to be more productive. At the same time, it offers important connectivity benefits for IT administrators and systems management engineers as well.

Always Managed

DirectAccess Manage Out and System Center Configuration Manager (SCCM)DirectAccess clients are automatically connected to the corporate network any time they have a working Internet connection. Having consistent corporate network connectivity means they receive Active Directory group policy updates on a regular basis, just as on-premises systems do. Importantly, they check in with internal management systems such as System Center Configuration Manager (SCCM) and Windows Server Update Services (WSUS) servers, enabling them to receive updates in a timely manner. Thus, DirectAccess clients are better managed, allowing administrators to more effectively maintain the configuration state and security posture for all their managed systems, including those that are predominantly field-based. This is especially crucial considering the prevalence WannaCry, Cryptolocker, and a variety of other types of ransomware.

DirectAccess Manage Out

DirectAccess Manage Out and System Center Configuration Manager (SCCM)When manage out is configured with DirectAccess, hosts on the internal network can initiate connections outbound to remote connected DirectAccess clients. SCCM Remote Control and Remote Desktop Connection (RDC) are commonly used to remotely connect to systems for troubleshooting and support. With DirectAccess manage out enabled, these and other popular administrative tools such as VNC, Windows Remote Assistance, and PowerShell remoting can also be used to manage remote DirectAccess clients in the field. In addition, enabling manage out allows for the proactive installation of agents and other software on remote clients, such as the SCCM and System Center Operation Manager (SCOM) agents, third-party management agents, antivirus and antimalware software, and more. A user does not have to be logged on to their machine for manage out to work.

IPv6

DirectAccess manage out requires that connections initiated by machines on the internal network to remote-connected DirectAccess clients must be made using IPv6. This is because DirectAccess clients use IPv6 exclusively to connect to the DirectAccess server. To enable connectivity over the public IPv4 Internet, clients use IPv6 transition technologies (6to4, Teredo, IP-HTTPS), and IPv6 translation components on the server (DNS64 and NAT64) enable clients to communicate with internal IPv4 resources. However, DNS64 and NAT64 only translate IPv6 to IPv4 inbound. They do not work in reverse.

Native or Transition?

It is recommended that IPv6 be deployed on the internal network to enable DirectAccess manage out. This is not a trivial task, and many organizations can’t justify the deployment for just this one specific use case. As an alternative, IPv6 can be configured with an IPv6 transition technology, specifically the Intrasite Automatic Tunnel Addressing Protocol (ISATAP). ISATAP functions as an IPv6 overlay network, allowing internal hosts to obtain IPv6 addresses and routing information from an ISATAP router to support manage out for DirectAccess clients.

ISATAP

When DirectAccess is installed, the server is automatically configured as an ISATAP router. Guidance for configuring ISATAP clients can be found here. Using ISATAP can be an effective approach to enabling DirectAccess manage out for SCCM when native IPv6 is not available, but it is not without its drawbacks.

• Using the DirectAccess server for ISATAP is only supported with single server DirectAccess deployments.
• Using the DirectAccess server for ISATAP does work when using Network Load Balancing (NLB) with some additional configuration, but it is not supported.
• Using the DirectAccess server for ISATAP does not work when an external load balancer is used, or if multisite is enabled.

ISATAP with Load Balancing and Multisite

It is technically possible to enable DirectAccess manage out for SCCM using ISATAP in load-balanced and multisite DirectAccess deployments, however. It involves deploying a separate ISATAP router and some custom configuration, but once in place it works perfectly. I offer this service to my customers as part of a consulting engagement. If you’re interested in restoring DirectAccess manage out functionality to support SCCM remote control, RDC, or VNC in load-balanced or multisite DirectAccess deployments, fill out the form below and I’ll provide you with more information.

Additional Resources

ISATAP Recommendations for DirectAccess Deployments
DirectAccess Manage Out with ISATAP Fails on Windows 10 and Windows Server 2016
DirectAccess Client Firewall Rule Configuration for ISATAP Manage Out
Video: Windows 10 DirectAccess in action (includes manage out demonstration)