DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Introduction

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic ManagerTo provide geographic redundancy, DirectAccess can be deployed in a multisite configuration. In this scenario, Windows 8.x and Windows 10 clients are aware of all entry points in the enterprise and will automatically select the nearest available entry point to connect to. The nearest entry point is defined as the one that responds the quickest. When a Windows 8.x or Windows 10 client attempts to establish DirectAccess connectivity, an HTTP GET is sent to all entry points and the client will select the one with the shortest Round Trip Time (RTT) for the request.

Note: Windows 7 clients can be provisioned when DirectAccess is configured for multisite access, but they must be assigned to an individual entry point.

Challenges

There are a number of challenges that come with the default multisite configuration. Choosing an entry point based solely on network latency is rather simplistic and can often produce unexpected results. It also lacks support for granular traffic distribution or active/passive configuration.

GSLB

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic ManagerFor the best experience, DirectAccess can be configured to use a Global Server Load Balancing (GSLB) solution to enhance transparent site selection and failover for Windows 8.x and Windows 10 clients. Commonly this is implemented using an on-premises appliance (Citrix NetScaler, F5 Global Traffic Manager, Kemp LoadMaster, A10 Thunder, etc.). These solutions offer exceptional control over DirectAccess traffic distribution, but they add expense and complexity.

Azure Traffic Manager

Azure Traffic Manager is a cloud-based GSLB solution that is a simple and cost-effective alternative to dedicated on-premises appliances. While it does not offer all of the features that GSLB appliances provide, it does provide better traffic distribution options than the default configuration. Importantly, it enables active/passive failover, which is a common requirement not supported natively with DirectAccess.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Traffic Manager Configuration

In the Azure portal (the new one, not the old one!) click New, Networking, and then Traffic Manager profile.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Provide a name and select a Routing method.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Routing method options are Performance, Weighted and Priority.

  • Performance. Select this option to enable clients to connect to the entry point with the lowest network latency.
  • Weighted. Select this option to enable clients to prefer some entry points more than others. Assign a weight value of 1 to 1000 for each entry point. Higher values have more preference. Values for entry points can be the same, if desired.
  • Priority. Select this option to enable clients to connect to a primary entry point, then fail over to a secondary or tertiary entry point in the event of an outage. Assign a priority value of 1 to 1000 for each entry point. Lower values take precedence. Each entry point must be assigned a unique priority value.

Click Create when finished. Next click Settings for the new traffic manager profile and click Configuration. Change Protocol to HTTPS, Port to 443, and Path to /IPHTTPS. Click Save when finished.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Next click Endpoints and click Add. Select External endpoint from the drop down list, provide a descriptive name, and then enter the Fully-Qualified Domain Name (FQDN) of the first DirectAccess entry point. When using the Performance routing method, choose a location that best represents the geography where the DirectAccess entry point is located. When using the Weighted or Priority routing methods, specify an appropriate value accordingly. Click Ok when finished. Repeat these steps for each entry point in the organization.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

DirectAccess Configuration

In the Remote Access Management console, highlight DirectAccess and VPN below Configuration in the navigation tree and then click Configure Multisite Settings below Multisite Deployment in the Tasks pane. Click Global Load Balancing and choose Yes, use global load balancing. Enter the FQDN of the Azure Traffic Manager profile and click Next, and then click Commit.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

Note: An SSL certificate with a subject name matching that of the GSLB FQDN is not required.

In some cases, the management console may report that global load balancing addresses cannot be identified automatically for some or all entry points.

DirectAccess Multisite Geographic Redundancy with Microsoft Azure Traffic Manager

If this occurs, it will be necessary to run the Set-DAEntryPoint PowerShell cmdlet to assign GLSB IP addresses to each entry point. The GSLB IP address is the public IPv4 address that the entry point public hostname resolves to.

Set-DAEntryPoint -Name [entrypoint_name] -GslbIP [external_ip_address]

For example:

Set-DAEntryPoint -Name "US West" -GslbIP 203.0.113.195
Set-DAEntryPoint -Name "US East" -GslbIP 198.51.100.21

Summary

DirectAccess includes native functionality to enable geographic load balancing for Windows 8.x and Windows 10 clients. The site selection process used by DirectAccess clients in this scenario is basic, and has the potential to yield unexpected results. Azure Traffic Manager is a simple, cost-effective alternative to dedicated on-premises GSLB appliances. It can be integrated with DirectAccess to address some of the shortcomings with the native entry point selection process.

Additional Resources

 

 

 

DirectAccess and the Free Kemp Technologies LoadMaster

Kemp Technologies Load BalancersBeginning with Windows Server 2012, DirectAccess includes native support for external load balancers. Where high availability is required (which is most deployments!) the use of an external load balancer (physical or virtual) has many advantages over Windows Network Load Balancing (NLB).

While NLB is easy to configure, it is not without serious drawbacks. NLB relies on network broadcasts, which limits its effectiveness in some environments. In addition, NLB supports only a single load distribution mode, which is round robin. NLB also lacks a convenient monitoring interface.

A dedicated load balancing solution provides more robust load balancing and better, more granular traffic control than NLB. Along with this greater control comes increased traffic visibility, with most solutions providing details and insight in to node health, status, and performance. Many solutions also offer Global Server Load Balancing (GSLB) support, which enhances geographic redundancy and offers improvements when performing automatic site selection in multisite deployments.

Often the barrier to adoption for a dedicated external load balancer is cost. Many of the leading solutions are incredibly powerful and feature-rich, but come with a substantial price tag. The Kemp Technologies LoadMaster Load Balancers solution is an excellent, cost-effective alternative and works quite well providing load balancing support for DirectAccess. And to make things even more interesting, they recently announced a completely FREE version of their commercial load balancing product.

The Free Kemp Technologies LoadMaster Load Balancer is fully functional and supported for use in production environments. It provides full layer 4-7 support and includes reverse proxy, edge security, web application firewall (WAF) functionality, and GSLB. It can be installed on most major virtualization platforms including Microsoft Hyper-V, VMware, and more. The free LoadMaster is also available in Kemp Technologies LoadMaster Load Balancer on the Microsoft Azure Public Cloud Platform, as well as the VMware and Amazon public cloud platforms.

The free LoadMaster does have some restrictions, however. For example, you cannot create high availability clusters of LoadMasters. Also, the free LoadMaster is limited in terms of network throughput (20Mbps) and SSL/TLS transaction per second (50, using 2048 bit keys). There is also a limit on the number of virtual servers you can create (1000). The free LoadMaster must also have access to the Internet as it must be able to call home to validate its license every 30 days. You can find a complete model comparison matrix between the free and commercial Kemp LoadMasters Kemp LoadMaster Comparison Chart.

As the free version of the Kemp LoadMaster does not support clustering, technically you still have a single point of failure. However, it can still deliver a net improvement in stability and uptime, as the LoadMaster is a purpose-built platform that requires much less servicing and maintenance than a typical Windows server.

DirectAccess Deployment Guide for Kemp LoadMaster Load BalancersFor detailed information about configuring the Kemp LoadMaster to provide load balancing services for DirectAccess, be sure to download the DirectAccess Deployment Guide for Kemp LoadMaster Load Balancers. And if you end up liking the free Kemp LoadMaster load balancer (and I’m confident you will!) you can always upgrade to the full commercial release at any time.

For more information about the free Kemp LoadMaster load balancer, click Free Kemp LoadMaster Load Balancer.