Always On VPN Load Balancing with Loadbalancer.org

Recently, I had the opportunity to deploy the Loadbalancer.org load balancer as part of an enterprise Always On VPN deployment. In the past, I’ve published guidance for using F5 BIG-IP, Citrix ADC (formerly NetScaler), and Kemp LoadMaster, so in this post, I’ll provide guidance for configuring Loadbalancer.org for Always On VPN.

IKEv2

Open the Loadbalancer.org management console and follow the steps below to configure Always On VPN load balancing on the appliance.

Create Virtual Service

Create a layer 4 virtual service for IKEv2.

  1. Click Cluster Configuration.
  2. Click Layer 4 – Virtual Services.
  3. Click Add a new Virtual Service.
  4. Enter a descriptive name for the virtual service in the Label field.
  5. Enter the virtual IP address (VIP) for the service in the IP Address field.
  6. Enter 500,4500 in the Ports field.
  7. Select UDP from the Protocol drop-down list.
  8. Select NAT from the Forwarding Method drop-down list.
  9. Click Update.

Add Real Servers

Add real servers to the virtual service.

  1. Click Layer 4 – Real Servers.
  2. Click Add a new Real Server next to the IKEv2 virtual service.
  3. Enter a descriptive name for the real server in the Label field.
  4. Enter the IP address of the real server in the Real Server IP Address field.
  5. Click Update.
  6. Repeat these steps for each additional VPN server in the cluster.

SSTP

Follow the steps below to configure SSTP load balancing on the appliance.

Create Virtual Service

Create a layer 4 virtual service for SSTP.

  1. Click Cluster Configuration.
  2. Click Layer 4 – Virtual Services.
  3. Click Add a new Virtual Service.
  4. Enter a descriptive name for the virtual service in the Label field.
  5. Enter the virtual IP address (VIP) for the service in the IP Address field.
  6. Enter 443 in the Ports field.
  7. Select TCP from the Protocol drop-down list.
  8. Select NAT from the Forwarding Method drop-down list.
  9. Click Update.

Configure Virtual Service Health Check

Update the health check method for the SSTP virtual service.

  1. Click Layer 4 – Virtual Services.
  2. Click Modify on the SSTP virtual service.
  3. Select Negotiate from the Check Type drop-down list in the Health Checks section.
  4. Enter 443 in the Check Port field.
  5. Select HTTPS from the Protocol drop-down list.
  6. Enter /sra_{BA195980-CD49-458b-9E23-C84EE0ADCD75}/ in the Request to send field.
  7. Enter 401 in the Response expected field.
  8. Click Update.

Note: Using the Negotiate health check type for the SSTP monitor on Loadbalancer.org appliances requires version 8.13.0 or later. Administrators can use the External script option when using earlier releases of Loadbalancer.org appliances. An SSTP health check script for Loadbalancer.org can be found here.

Add Real Servers

Add real servers to the virtual service.

  1. Click Layer 4 – Real Servers.
  2. Click Add a new Real Server next to the SSTP virtual service.
  3. Enter a descriptive name for the real server in the Label field.
  4. Enter the IP address of the real server in the Real Server IP Address field.
  5. Click Update.
  6. Repeat these steps for each additional VPN server in the cluster.

Review

Once complete, click System Overview to view the overall health of your VPN servers.

Summary

The Loadbalancer.org appliance is an efficient, cost-effective, and easy-to-configure load-balancing solution that works well with Always On VPN implementations. It’s available as a physical or virtual appliance. There’s also a cloud-based version. It also includes advanced features such as TLS offload, web application firewall (WAF), global server load balancing (GSLB), and more. If you are looking for a layer 4-7 load balancer for Always On VPN and other workloads, be sure to check them out.

Additional Information

Loadbalancer.org Virtual Appliance

SSTP Health Check Script for Loadbalancer.org

Always On VPN and VpnStrategy

NetMotion Mobility for DirectAccess Administrators – Split vs. Force Tunneling

Always On VPN supports a variety of VPN protocols for the user tunnel. Internet Key Exchange version 2 (IKEv2) and Secure Socket Tunneling Protocol (SSTP) are the most common. I wrote about the advantages and disadvantages of each in this post. To summarize, IKEv2 provides the highest security options but suffers from operational limitations. SSTP offers excellent security and is generally more reliable.

VpnStrategy

Always On VPN administrators must choose between IKEv2 and SSTP when configuring the Always On VPN user tunnel. Some administrators may prefer to use IKEv2 when available but then fall back to SSTP if it is not. To accomplish this requires editing the rasphone.pbk file and setting the value of VpnStrategy to 8, as described here.

Challenges

Unfortunately, setting the VpnStrategy value to 8 poses some challenges. Updating rasphone.pbk requires editing a text file on each endpoint post-deployment. Updating rasphone.pbk can be automated using the Update-Rasphone.ps1 script or Microsoft Intune proactive remediation.

Limitations

By default, Windows will overwrite the VpnStrategy setting in rasphone.pbk when fallback occurs. For example, setting VpnStrategy to prefer IKEv2 over SSTP will be reset to use SSTP first if a connection with IKEv2 fails. There’s a registry setting available that’s supposed to prevent this, but it doesn’t always work as expected.

Windows 11

There’s good news for administrators deploying Always On VPN on Windows 11. Microsoft recently introduced support for additional NativeProtocol types in XML. Specifically, VPN protocol preference can now be defined using the ProtocolList native protocol type. When using the ProtocolList native protocol type, each supported VPN protocol is listed in order of preference using the syntax shown below.

In addition, the RetryTimeInHours value defines the time Windows will try the last successful connection protocol. Setting this value to 0 overrides this and ensures the preferred protocol (the first protocol in the list) will always be attempted first.

SSTP Only

Previously the VPNv2CSP only supported IKEv2 or Automatic as values for the native protocol type. Windows 11 now supports SSTP as a native protocol type. Administrators configuring Always On VPN user tunnel connections using SSTP exclusively can now use this option.

Caveats

While the settings above are supported in both Windows 11 21H2 and 22H2, there are some known issues when enabling these settings. Specifically, when administrators define the ProtocolList value for the native protocol type, IKEv2 is always shown as the active protocol, even when an SSTP connection is established.

Also, if ProtocolList is used, the VPN connection cannot be managed using PowerShell. The VPN profile will not be displayed when running Get-VpnConnection at the time of this writing. Hopefully Microsoft will fix this soon.

Additional Information

Always On VPN CSP Updates

Always On VPN IKEv2 and SSTP Fallback

Always On VPN and Intune Proactive Remediation

Always On VPN Protocol Recommendations for Windows Server RRAS

Always On VPN IKEv2 Features and Limitations

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load BalancingLoad balancing Windows Server Network Policy Servers (NPS) is straightforward in most deployment scenarios. Most VPN servers, including Windows Server Routing and Remote Access Service (RRAS) servers allow the administrator to configure multiple NPS servers for redundancy and scalability. In addition, most solutions support weighted distribution, allowing administrators to distribute requests evenly between multiple NPS servers (round robin load balancing) or to distribute them in order of priority (active/passive failover).

The Case for NPS Load Balancing

Placing NPS servers behind a dedicated network load balancing appliance is not typically required. However, there are some deployment scenarios where doing so can provide important advantages.

Deployment Flexibility

Having NPS servers fronted by a network load balancer allows the administrator to configure a single, virtual IP address and hostname for the NPS service. This provides deployment flexibility by allowing administrators to add or remove NPS servers without having to reconfigure VPN servers, network firewalls, or VPN clients. This can be beneficial when deploying Windows updates, migrating NPS servers to different subnets, adding more NPS servers to increase capacity, or performing rolling upgrades of NPS servers.

Traffic Shaping

Dedicated network load balancers allow for more granular control and of NPS traffic. For example, NPS routing decisions can be based on real server availability, ensuring that authentication requests are never sent to an NPS server that is offline or unavailable for any reason. In addition, NPS traffic can be distributed based on server load, ensuring the most efficient use of NPS resources. Finally, most load balancers also support fixed or weighted distribution, enabling active/passive failover scenarios if required.

Traffic Visibility

Using a network load balancer for NPS also provides better visibility for NPS authentication traffic. Most load balancers feature robust graphical displays of network utilization for the virtual server/service as well as backend servers. This information can be used to ensure enough capacity is provided and to monitor and plan for additional resources when network traffic increases.

Configuration

Before placing NPS servers behind a network load balancer, the NPS server certificate must be specially prepared to support this unique deployment scenario. Specifically, the NPS server certificate must be configured with the Subject name of the cluster, and the Subject Alternative Name field must include both the cluster name and the individual server’s hostname.

Always On VPN and Network Policy Server (NPS) Load Balancing

Always On VPN and Network Policy Server (NPS) Load Balancing

Create Certificate Template

Perform the following steps to create a certificate template in AD CS to support NPS load balancing.

  1. Open the Certificate Templates management console (certtmpl.msc) on the certification authority (CA) server or a management workstation with the remote administration tools installed.
  2. Right-click the RAS and IAS Servers default certificate template and choose Duplicate.
  3. Select the Compatibility tab.
    1. Select Windows Server 2008 or a later version from the Certification Authority drop-down list.
    2. Select Windows Vista/Server 2008 or a later version from the Certificate recipient drop-down list.
  4. Select the General tab.
    1. Enter a descriptive name in the Template display name field.
    2. Choose an appropriate Validity period and Renewal period.
    3. Do NOT select the option to Publish certificate in Active Directory.
  5. Select the Cryptography tab.
    1. Choose Key Storage Provider from the Provider Category drop-down list.
    2. Enter 2048 in the Minimum key size field.
    3. Select SHA256 from the Request hash drop-down list.
  6. Select the Subject Name tab.
    1. Select the option to Supply in the request.
  7. Select the Security tab.
    1. Highlight RAS and IAS Servers and click Remove.
    2. Click Add.
    3. Enter the security group name containing all NPS servers.
    4. Check the Read and Enroll boxes in the Allow column in the Permissions for [group name] field.
  8. Click Ok.

Perform the steps below to publish the new certificate template in AD CS.

  1. Open the Certification Authority management console (certsrv.msc) on the certification authority (CA) server or a management workstation with the remote administration tools installed.
  2. Expand Certification Authority (hostname).
  3. Right-click Certificate Templates and choose New and Certificate Template to Issue.
  4. Select the certificate template created previously.
  5. Click Ok.

Request Certificate on NPS Server

Perform the following steps to request a certificate for the NPS server.

  1. Open the Certificates management console (certlm.msc) on the NPS server.
  2. Expand the Personal folder.
  3. Right-click Certificates and choose All Tasks and Request New Certificate.
  4. Click Next.
  5. Click Next.
  6. Select the NPS server certificate template and click More information is required to enroll for this certificate link.
  7. Select the Subject tab.
    1.  Select Common name from the Type drop-down list in the Subject name section.
    2. Enter the cluster fully-qualified hostname (FQDN) in the Value field.
    3. Click Add.
    4. Select DNS from the Type drop-down list in the Alternative name section.
    5. Enter the cluster FQDN in the Value field.
    6. Click Add.
    7. Enter the NPS server’s FQDN in the Value field.
    8. Click Add.
      Always On VPN and Network Policy Server (NPS) Load Balancing
  8. Select the General tab.
    1. Enter a descriptive name in the Friendly name field.
  9. Click Ok.
  10. Click Enroll.

Load Balancer Configuration

Configure the load balancer to load balance UDP ports 1812 (authentication) and 1813 (accounting). Optionally, to ensure that authentication and accounting requests go to the same NPS server, enable source IP persistence according to the vendor’s guidance. For the KEMP LoadMaster load balancer, the feature is called “port following”. On the F5 BIG-IP it is called a “persistence profile”, and on the Citrix NetScaler it is called a “persistency group”.

Additional Information

Always On VPN IKEv2 Load Balancing with KEMP LoadMaster

Always On VPN Hands-On Training Classes in U.S. and Europe