DirectAccess and the Free Kemp Technologies LoadMaster

Kemp Technologies Load BalancersBeginning with Windows Server 2012, DirectAccess includes native support for external load balancers. Where high availability is required (which is most deployments!) the use of an external load balancer (physical or virtual) has many advantages over Windows Network Load Balancing (NLB).

While NLB is easy to configure, it is not without serious drawbacks. NLB relies on network broadcasts, which limits its effectiveness in some environments. In addition, NLB supports only a single load distribution mode, which is round robin. NLB also lacks a convenient monitoring interface.

A dedicated load balancing solution provides more robust load balancing and better, more granular traffic control than NLB. Along with this greater control comes increased traffic visibility, with most solutions providing details and insight in to node health, status, and performance. Many solutions also offer Global Server Load Balancing (GSLB) support, which enhances geographic redundancy and offers improvements when performing automatic site selection in multisite deployments.

Often the barrier to adoption for a dedicated external load balancer is cost. Many of the leading solutions are incredibly powerful and feature-rich, but come with a substantial price tag. The Kemp Technologies LoadMaster Load Balancers solution is an excellent, cost-effective alternative and works quite well providing load balancing support for DirectAccess. And to make things even more interesting, they recently announced a completely FREE version of their commercial load balancing product.

The Free Kemp Technologies LoadMaster Load Balancer is fully functional and supported for use in production environments. It provides full layer 4-7 support and includes reverse proxy, edge security, web application firewall (WAF) functionality, and GSLB. It can be installed on most major virtualization platforms including Microsoft Hyper-V, VMware, and more. The free LoadMaster is also available in Kemp Technologies LoadMaster Load Balancer on the Microsoft Azure Public Cloud Platform, as well as the VMware and Amazon public cloud platforms.

The free LoadMaster does have some restrictions, however. For example, you cannot create high availability clusters of LoadMasters. Also, the free LoadMaster is limited in terms of network throughput (20Mbps) and SSL/TLS transaction per second (50, using 2048 bit keys). There is also a limit on the number of virtual servers you can create (1000). The free LoadMaster must also have access to the Internet as it must be able to call home to validate its license every 30 days. You can find a complete model comparison matrix between the free and commercial Kemp LoadMasters Kemp LoadMaster Comparison Chart.

As the free version of the Kemp LoadMaster does not support clustering, technically you still have a single point of failure. However, it can still deliver a net improvement in stability and uptime, as the LoadMaster is a purpose-built platform that requires much less servicing and maintenance than a typical Windows server.

DirectAccess Deployment Guide for Kemp LoadMaster Load BalancersFor detailed information about configuring the Kemp LoadMaster to provide load balancing services for DirectAccess, be sure to download the DirectAccess Deployment Guide for Kemp LoadMaster Load Balancers. And if you end up liking the free Kemp LoadMaster load balancer (and I’m confident you will!) you can always upgrade to the full commercial release at any time.

For more information about the free Kemp LoadMaster load balancer, click Free Kemp LoadMaster Load Balancer.

DirectAccess NLS Deployment Considerations for Large Enterprises

Introduction

For a DirectAccess deployment, the Network Location Server (NLS) is an infrastructure component that allows DirectAccess clients to determine if they are inside or outside of the corporate network. If the DirectAccess client can successfully connect to the NLS, it is on the internal network and DirectAccess is not used. If the NLS cannot be contacted, the client is outside of the network and will attempt to establish remote corporate network connectivity using DirectAccess.

High Availability

It is recommended that the NLS be made highly available by deploying at least two servers in a load balanced configuration to avoid potential service disruptions for DirectAccess clients inside the corporate network. While this approach is sufficient for networks that are contained in a single physical location, it does present some challenges for large organizations with internal networks that span multiple physical locations.

NLS Challenges

For DirectAccess, only a single NLS URL can be configured per DirectAccess deployment, as shown here.

DirectAccess NLS Deployment Considerations for Large Enterprises

If a WAN outage occurs on an internal network that spans multiple physical locations, internal DirectAccess clients in locations other than where the NLS resides will mistakenly believe they are outside of the corporate network. This can lead to degraded performance and potential loss of connectivity. NLS reliability can still be improved when the internal network spans multiple physical locations by deploying NLS at each physical location and configuring clients to use a local NLS. This will keep traffic off of the WAN and prevent service disruptions in the event of a WAN outage.

Redundant NLS

There are several strategies that can be used to configure internal DirectAccess clients to use a local NLS, including DNS round robin, a network load balancer, or Active Directory Group Policy. Using DNS or a load balancer requires only a single NLS URL. Using Active Directory Group Policy requires a unique NLS URL per physical location.

DNS

The simplest way to enable DirectAccess clients to use a local NLS is to use DNS round robin and take advantage of subnet prioritization. To do this, create an “A” resource record in DNS that resolves to the IPv4 address for each NLS. On the DNS server, open the DNS Manager, right-click the DNS server and choose Properties. Click the Advanced tab and select the options to Enable round robin and Enable netmask ordering.

DirectAccess NLS Deployment Considerations for Large Enterprises

This will ensure that name resolution requests for the NLS FQDN will be returned with the nearest NLS. More information about DNS netmask ordering can be found here.

Load Balancer

A Global Server Load Balancing (GSLB) solution can also be employed to route requests to a local NLS. Examples include F5 Global Traffic Manager (GTM) and Kemp Technologies LoadMaster GEO. Prescriptive guidance for configuring the Kemp LoadMaster for this scenario can be found here.

Group Policy

This method involves creating unique NLS URLs per site and overriding the default DirectAccess client configuration using Active Directory Group Policy. Separate Group Policy Objects (GPOs) are created and linked to Active Directory Sites to assign a local NLS to internal DirectAccess clients. To accomplish this, create a new GPO for each location where NLS will reside. Edit the GPO and navigate to Computer Configuration/Policies/Administrative Templates/Network/Network Connectivity Status Indicator. Double-click Specify domain location determination URL, choose Enabled, and then enter the URL that corresponds to the NLS for that location.

DirectAccess NLS Deployment Considerations for Large Enterprises

In the Remote Access Management Console, edit the Infrastructure Server Setup (Step 3) and add the FQDN for each NLS. Do not specify a DNS server. This effectively creates a Name Resolution Policy Table (NRPT) exemption so the NLS cannot be reached when the DirectAccess client is connected remotely.

DirectAccess NLS Deployment Considerations for Large Enterprises

In the Group Policy Management Console right-click on Sites and choose Show Sites.

DirectAccess NLS Deployment Considerations for Large Enterprises

Select each Active Directory site where NLS will reside.

DirectAccess NLS Deployment Considerations for Large Enterprises

Link the GPOs for each NLS to the corresponding site, then right-click the linked GPO and choose Enforced.

DirectAccess NLS Deployment Considerations for Large Enterprises

Note: Do not install the NLS on a domain controller! By design, the NLS is not reachable remotely by DirectAccess clients. This can lead to potential authentication issues and may prevent DirectAccess clients from connecting successfully.

Client Testing

To confirm that a client computer has been configured to use a local NLS, verify the currently associated Active Directory site by issuing the following command on the DirectAccess client computer:

nltest /dsgetsite

Next, confirm the setting of the NLS by issuing the following command:

Get-NCSIPolicyConfiguration

As a reference, here are examples from two DirectAccess clients in two different internal physical locations:

DirectAccess NLS Deployment Considerations for Large Enterprises

DirectAccess NLS Deployment Considerations for Large Enterprises

Summary

The limitation of a single Network Location Server (NLS) URL for a DirectAccess deployment presents some challenges for DirectAccess architects seeking to eliminate single points of failure in their design. Using the techniques described in this article, administrators can ensure that DirectAccess clients will always connect to a local NLS, eliminating potential failure points and improving the overall reliability of the solution.

Additional Resources

DirectAccess Network Location Server (NLS) Guidance

Configure KEMP LoadMaster Load Balancer for DirectAccess Network Location Server (NLS)

Configure Citrix NetScaler for DirectAccess Network Location Server (NLS)

Configure F5 BIG-IP for DirectAccess Network Location Server (NLS)