Always On VPN Authentication Failure with Azure Conditional Access

Always On VPN Clients Prompted for Authentication when Accessing Internal Resources

Integrating Microsoft Azure Conditional Access with Windows 10 Always On VPN has several important benefits. The most important is that it allows administrators to improve their security posture by enforcing access polices that can be dynamically applied. For example, requiring multifactor authentication (MFA) for privileged users (e.g., administrators) or sign-ins that appear to be risky, the type of device they are connecting with, the health of the endpoint, and much more.

Authentication Failure

When configuring Always On VPN to support Azure Conditional Access, administrators may expeirence a failed authentication during preliminary testing. Specifically, an event ID 20227 from the RasClient source may be encountered with the following error message.

“The user <username> dialed a connection named <connection name> which has failed. The error code returned on failure is 812.”

Looking at the event logs on the Network Policy Server (NPS) server reveals an event ID 6273 from the Microsoft Windows security auditing source with Reason Code 258 and the following Reason.

“The revocation function was unable to check revocation for the certificate.”

Root Cause

When Azure Conditional Access is configured for Always On VPN, a short-lived certificate (1 hour lifetime) is provisioned by Azure. This certificate does not include revocation information because, by design, a short-lived certificate does not need to be revoked. However, by default NPS always checks revocation when client authentication certificates are used for authentication. Since the certificate does not include this information, certificate revocation fails.

Resolution

The way to resolve this issue is to disable certificate revocation checking for Protected Extensible Authentication Protocol (PEAP) authentication requests. To do this, open an elevated PowerShell window on the NPS server and run the following command.

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Services\RasMan\PPP\EAP\13\’ -Name IgnoreNoRevocationCheck -PropertyType DWORD -Value 1 -Force

Once complete, restart the NPS server for the changes to take effect.

Additional Information

Windows 10 Always On VPN Network Policy Server (NPS) Load Balancing

Windows 10 Always On VPN Network Policy Server (NPS) Server 2019 Bug

Always On VPN and Autopilot Hybrid Azure AD Join

Always On VPN and Autopilot Hybrid Azure AD Join

Windows Autopilot is a cloud-based technology that administrators can use to configure new devices wherever they may be, whether on-premises or in the field. Devices provisioned with Autopilot are Azure AD joined by default and managed using Microsoft Endpoint Manager. Optionally, an administrator can enable hybrid Azure AD join by also joining the device to an on-premises Active Directory domain using a domain join configuration profile in conjunction with the offline domain-join connector. Although enabling hybrid Azure AD join might sound appealing, there are specific deployment scenarios that present some rather unique and challenging problems when using this option.

Offline Hybrid Azure AD Join

For field-based devices, the device must have connectivity to a domain controller to support the initial login when the user has no local cached credentials. The Always On VPN device tunnel can be deployed in this scenario to provide connectivity and allow the user to log in to a new device the first time without being on-premises. The Always On VPN device tunnel is easily deployed using a Microsoft Endpoint Manager configuration profile. Certificates required to support the device tunnel can be deployed with Microsoft Endpoint Manager and one of the certificate connectors for Microsoft Endpoint Manager.

Windows 10 Professional

If a Windows 10 Professional device is configured using Autopilot, and hybrid Azure AD joined is enabled, the Always On VPN device tunnel can still be provisioned, but it won’t start automatically because it requires Enterprise Edition to be fully functional. This prevents the user from being able to logon the first time. The device must be upgraded to Enterprise Edition before the first user logon. There are multiple ways to accomplish this depending on the deployment scenario and activation requirements.

Multiple Activation Key

The easiest way to upgrade Windows 10 Professional to Enterprise Edition is to obtain a Multiple Activation Key (MAK) and deploy that to clients using a Microsoft Endpoint Manager configuration profile. Follow the steps below to create a configuration profile to perform this upgrade.

  1. Open the Microsoft Endpoint Manager console and click on Devices > Configuration Profiles.
  2. Click Create profile.
  3. Select Windows 10 and later in the Platform drop-down list.
  4. Select Templates in the Profile type drop-down list.
  5. Select Edition upgrade and mode switch from the list of templates.
  6. Click Create.

Use the following steps to configure the settings for the configuration profile.

  1. Enter a descriptive name for the configuration profile in the Name field.
  2. Enter a description for the profile in the Description field (optional).
  3. Click Next.
  4. Expand the Edition Upgrade section and select Windows 10 Enterprise from the Edition to upgrade to drop-down list.
  5. Enter your multiple activation product key in the Product Key field.

    Always On VPN and Autopilot Hybrid Azure AD Join

Once complete, assign the configuration profile to the appropriate groups and click Create.

KMS Activation

If Key Management Service (KMS) activation is required, follow the steps listed previously for MAK. Enter the KMS client setup key for Windows 10 Enterprise which is NPPR9-FWDCX-D2C8J-H872K-2YT43. The device will complete KMS activation when it can connect to the on-premises KMS host.

Subscription Activation

Windows 10 Enterprise Edition licensing is included in some Microsoft 365 subscriptions. This poses a unique challenge for hybrid Azure AD join scenarios, however. Specifically, subscription activation is a “step-up” process that requires Windows 10 Professional to have been successfully activated previously. Also, this occurs after the user logs on, but the user cannot log on unless the device tunnel is active. Catch 22!

Workaround

A multi-step process is required to address the limitations imposed by subscription activation. To begin, the device must be upgraded to Enterprise Edition, so the device tunnel is available for the initial user logon. This is a temporary, one-time upgrade to Enterprise Edition solely for the purpose of getting the device tunnel to connect and allow the user to authenticate.

To begin, download this PowerShell script and follow the steps below to deploy it to Windows 10 devices using Microsoft Endpoint Manager.

  1. Open the Microsoft Endpoint Manager console and click on Devices > Scripts.
  2. Click Add and select Windows 10.
  3. Enter a descriptive name for the configuration profile in the Name field.
  4. Enter a description for the profile in the Description field (optional).
  5. Click Next.
  6. Enter the location of the PowerShell script in the Script location field.
  7. Click Next, then assign the script to the appropriate device group(s) and click Add.

The PowerShell script will automatically install the KMS client setup key for Windows 10 Enterprise Edition, then restart the network interfaces to ensure the device tunnel starts. This will immediately upgrade the client device to Windows 10 Enterprise Edition and allow the user to authenticate.

Subscription activation with a step-up upgrade to Enterprise Edition still requires that Windows 10 Professional be activated first. To accomplish this, the embedded Windows 10 Professional key must be re-installed on the client. To do this, download this PowerShell script and follow the same steps listed previously to deploy a PowerShell script with Microsoft Endpoint Manager. However, this script should be assigned to users, not devices.

Once this script is run on the client it will be downgraded (temporarily) to Windows 10 Professional edition. After activation is successful, subscription activation will once again upgrade the client to Windows 10 Enterprise Edition.

Considerations

As you can see, the process of getting a Windows 10 Professional edition client onboarded in a hybrid Azure AD joined scenario is somewhat complex. My advice is to avoid this scenario whenever possible. Access to on-premises resources with the Always On VPN user tunnel with full single sign-on support is still available for users on Windows 10 devices that are Azure AD joined only. Unless there is a specific requirement to manage client devices using on-premises Active Directory and group policy, consider choosing native Azure AD join with Autopilot and manage devices using Microsoft Endpoint Manager exclusively.

Special Thanks

I would like to extend a special thank you to everyone in the Microsoft Endpoint Manager community who provided valuable input and feedback for me on this topic, especially John Marcum, Michael Niehaus, and Sandy Zeng. Follow the #MEMCM hashtag on Twitter to keep up on all things Microsoft Endpoint Manager.

Additional Information

Overview of Windows Autopilot

Windows 10 Subscription Activation

Windows 10 Always On VPN Class-Based Default Route and Microsoft Endpoint Manager

Windows 10 Always On VPN Device Tunnel and Custom Cryptography in Microsoft Endpoint Manager

Always On VPN Device Tunnel with Azure VPN Gateway

Always On VPN Device Tunnel with Azure VPN GatewayAlways On VPN is infrastructure independent, which allows for many different deployment scenarios including on-premises and cloud-based. In Microsoft Azure, the Azure VPN gateway can be configured to support Windows 10 Always On VPN client connections in some scenarios. Recently I wrote about using the Azure VPN gateway for Always On VPN user tunnels. In this post I’ll describe how to configure the Azure VPN gateway to support an Always On VPN device tunnel.

Limitations

There are a few crucial limitations that come with using the Azure VPN gateway for Always On VPN. Importantly, the Azure VPN gateway can support either user tunnels or device tunnels, not both at the same time. In addition, Azure supports only a single VPN gateway per VNet, so deploying an additional VPN gateway in the same VNet to support Always On VPN user tunnels is not an option.

Root CA Certificate

The Always On VPN device tunnel is authenticated using a machine certificate issued to domain-joined Windows 10 Enterprise edition clients by the organization’s internal Certification Authority (CA). The CA’s root certificate must be uploaded to Azure for the VPN gateway to authorize device tunnel connections. The root CA certificate can be exported using the Certification Authority management console (certsrv.msc) or via the command line.

Export Certificate – GUI

Follow the steps below to export a root CA certificate using the Certification Authority management console.

1. On the root CA server, open the Certification Authority management console.
2. Right-click the CA and choose Properties.
3. Select the CA server’s certificate and choose View Certificate.
4. Select the Details tab and click Copy to File.
5. Click Next.
6. Choose Base-64 encoded X.509 (.CER).

Always On VPN Device Tunnel with Azure VPN Gateway

7. Click Next.
8. Enter a location to save the file to.
9. Click Next, Finish, and Ok.

Export Certificate – Command Line

Follow the steps below to export a root CA certificate using the command line.

1. On the root CA server, open an elevated command window (not a PowerShell window).
2. Enter certutil.exe -ca.cert root_certificate.cer.
3. Enter certutil.exe -encode root.cer root_certificate_base64.cer.

Copy Public Key

1. Open the saved root certificate file using Notepad.
2. Copy the file contents between the BEGIN CERTIFICATE and END CERTIFICATE tags, as shown here. Use caution and don’t copy the carriage return at the end of the string.

Always On VPN Device Tunnel with Azure VPN Gateway

Point-to-Site Configuration

The Azure VPN gateway must be deployed as a Route-Based gateway to support point-to-site VPN connections. Detailed requirements for the gateway can be found here. Once the VPN gateway has been provisioned, follow the steps below to enable point-to-site configuration for Always On VPN device tunnels.

1. In the navigation pane of the Azure VPN gateway settings click Point-to-site configuration.
2. Click the Configure now link and specify an IPv4 address pool to be assigned to VPN clients. This IP address pool must be unique in the organization and must not overlap with an IP address ranges defined in the Azure virtual network.
3. From the Tunnel type drop-down list select IKEv2.
4. In the Root certificates section enter a descriptive name for the certificate in the Name field.
5. Copy and paste the Base64 encoded public key copied previously into the Public certificate data field.
6. Click Save to save the configuration.

Always On VPN Device Tunnel with Azure VPN Gateway

VPN Client Configuration

To support the Always On VPN device tunnel, the client must have a certificate issued by the internal CA with the Client Authentication Enhanced Key Usage (EKU). Detailed guidance for deploying a Windows 10 Always On VPN device tunnel can be found here.

Download VPN Configuration

1. Click Point-to-site configuration.
2. Click Download VPN client.
3. Click Save.
4. Open the downloaded zip file and extract the VpnSettings.xml file from the Generic folder.
5. Copy the FQDN in the VpnServer element in VpnSettings.xml. This is the FQDN that will be used in the template VPN connection and later in ProfileXML.

Create a Test VPN Connection

It is recommended to create a test VPN connection to perform validation testing of the Azure VPN gateway before provisioning an Always On VPN device tunnel broadly. On a domain-joined Windows 10 enterprise client, create a new VPN connection using IKEv2 with machine certificate authentication. Use the VPN server FQDN copied from the VpnSettings.xml file previously.

Always On VPN Device Tunnel with Azure VPN Gateway

Create an Always On VPN Connection

Once the VPN has been validated using the test profile created previously, an Always On VPN profile can be created and deployed using Intune, SCCM, or PowerShell. The following articles can be used for reference.

Deploy Always On VPN device tunnel using PowerShell

Deploy Always On VPN device tunnel using Intune

IKEv2 Security Configuration

The default IKEv2 security parameters used by the Azure VPN gateway are better than Windows Server, but the administrator will notice that a weak Diffie-Hellman (DH) key (Group 2 – 1024 bit) is used during IPsec phase 1 negotiation.

Always On VPN Device Tunnel with Azure VPN Gateway

Use the following PowerShell commands to update the default IKEv2 security parameters to recommended baseline defaults, including 2048-bit keys (DH group 14) and AES-128 for improved performance.

Connect-AzAccount
Select-AzSubscription -SubscriptionName [Azure Subscription Name]

$Gateway = [Gateway Name]
$ResourceGroup = [Resource Group Name]

$IPsecPolicy = New-AzVpnClientIpsecParameter -IpsecEncryption AES128 -IpsecIntegrity SHA256 -SALifeTime 28800 -SADataSize 102400000 -IkeEncryption AES128 -IkeIntegrity SHA256 -DhGroup DHGroup14 -PfsGroup PFS14

Set-AzVpnClientIpsecParameter -VirtualNetworkGatewayName $Gateway -ResourceGroupName $ResourceGroup -VpnClientIPsecParameter $IPsecPolicy

Note: Be sure to update the cryptography settings on the test VPN connection and in ProfileXML for Always On VPN connections to match the new VPN gateway settings. Failing to do so will result in an IPsec policy mismatch error.

Additional Information

Windows 10 Always On VPN User Tunnel with Azure VPN Gateway

Windows 10 Always On VPN IKEv2 Security Configuration

Windows 10 Always On VPN Device Tunnel Configuration using Microsoft Intune

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN Options for Azure Deployments

Windows 10 Always On VPN IKEv2 Features and Limitations

%d bloggers like this: