Always On VPN Servers and Failover

When configuring Microsoft Always On VPN, one of the first and most crucial settings is defining the public hostname of the VPN server to which clients connect. If you’re deploying Always On VPN client configuration settings using Intune—either with the native VPN policy template or a custom XML profile—you’ll see that multiple server entries are supported. Intune even allows administrators to define a “default server.” At first glance, this might suggest that the client will try the default server first and automatically fail over to the others if it’s unavailable. Unfortunately, that’s not how it works.

Intune VPN Template

When using the native Intune VPN device configuration template, administrators will find multiple entry fields for the servers in the Base VPN section.

In the example below, the Global VPN entry is marked as ‘default’.

Custom XML

When defining VPN settings using XML configuration, administrators can also list multiple servers.

Interestingly, the VPNv2 CSP used by custom XML profiles doesn’t support the concept of a “default server” at all.

How It Really Works

Defining multiple servers in the Always On VPN profile does not enable automatic failover. The client connects only to the first server in the list. The so-called “default server” setting in Intune is ignored, and the GUI even allows you to mark all servers as default, which is meaningless.

However, the configuration isn’t entirely useless. If you define multiple servers, they’ll appear on the client side as manual options. If the first server becomes unavailable, the user can open the Settings app, navigate to the advanced settings of the Always On VPN profile, and select an alternate server to connect manually.

Summary

Although Intune and XML configurations allow multiple VPN servers, Always On VPN does not provide automatic failover. Clients only attempt to connect to the first server in the list, and the “default server” setting in Intune has no effect. Multiple entries are still useful, but only for manual server selection by end-users when the primary server is down. For true automated high availability and redundancy, consider an external solution such as Azure Traffic Manager.

Additional Information

Always On VPN Multisite with Azure Traffic Manager

The Case for Short-Lived Certificates in Enterprise Environments

Digital certificates, issued by an internal, private Certification Authority (CA) like Microsoft Active Directory Certificate Services (AD CS), are commonly used in enterprise environments for user and device authentication for workloads such as VPN, Wi-Fi (802.1x), System Center Configuration Manager (SCCM), IPsec, and more. But how long should a user or device authentication certificate be valid? This question is increasingly critical as organizations strive to balance security and operational efficiency. Short-lived certificates, typically valid for weeks or months rather than years, are gaining traction as a powerful tool to enhance security. By reducing the window of opportunity for attackers to exploit compromised credentials, short-lived certificates offer a proactive approach to mitigating risks while aligning with evolving security best practices and the needs of modern IT infrastructures.

What is a Certificate?

A digital certificate is a document that binds an identity to an asymmetric key pair (public key and private key). Certificates offer strong, phishing-resistant authentication that improves security and assurance for users and devices authenticating to Microsoft Active Directory (AD). When a certificate is issued, an administrator decides how long the certificate will be valid. The criticality of this setting is often overlooked.

Certificate Lifetime

Administrators must define the certificate’s validity period when creating a certificate template in AD CS or an Intune PKCS or SCEP device configuration policy. Most commonly, administrators select the default one-year validity period. However, public CAs are trending toward shorter certificate lifetimes, and strong consideration should be given to their use in private enterprise deployments.

Current Standards

Today, the maximum certificate lifetime for a publicly issued TLS certificate is 398 days (approximately 13 months). This standard is imposed by the CA/Browser Forum, a voluntary consortium of public CAs, browser vendors, and other industry stakeholders that develop and promote security standards and best practices for digital certificates and Public Key Infrastructure (PKI). They established the 398-day certificate lifetime mainly in response to the previous decade’s plethora of SSL/TLS vulnerabilities.

Challenges

Having certificates with long lifetimes poses significant challenges for administrators when responding to key compromise events or zero-day vulnerabilities. This may necessitate urgent certificate replacement, often involving manual intervention. To address these challenges and promote automation, some public CAs like Let’s Encrypt issue certificates with much shorter lifetimes than one year.

Public CA Certificates

Shorter lifetimes for public SSL/TLS certificates have numerous positive security benefits. Short-lived certificates provide agility to update cryptography settings more rapidly than long-lived certificates. Also, the short lifetime of the certificate is beneficial if the private key is compromised because it limits the amount of time an attacker can exploit the stolen key, limiting exposure and reducing potential damage. These security benefits have driven significant changes in public CA practices, as seen in today’s standards.

47 Days

Recently, I wrote about a new directive from the CA/Browser Forum, which adopted a measure reducing the current maximum lifetime of public TLS certificates to 47 days. The maximum lifetime for public TLS certificates will be gradually reduced to allow the industry to adopt short-lived certificates.

Enterprise CA Certificates

Private enterprise PKI deployments like AD CS are not required to adhere to CA/Browser Forum mandates. Organizations are free to manage their internal PKI however they choose. However, examining industry trends and ensuring that security best practices are aligned as much as possible is crucial. While public CAs set the pace, private enterprise PKI can adopt similar strategies to bolster security.

AD Authentication

As stated previously, many positive security benefits are associated with short-lived certificates, especially for authentication to Active Directory.

PKINIT

PKINIT is an extension to the Kerberos protocol that enables certificate-based authentication with Active Directory (AD). You can read about the details here, but PKINIT allows a principal (user or device) to authenticate to AD by simply demonstrating control of the private key. Thus, protecting the private key is vital.

TPM

Enrolling certificates in a Trusted Platform Module (TPM) is the best way to ensure private keys remain private. No one, including administrators, can export private keys protected by TPM. Administrators should ensure TPM enrollment for client authentication certificates whenever possible.

Guidance

Today, I recommend that my customers issue end entity user and device authentication certificates with a lifetime of no more than one year for 2048-bit RSA certificates with private keys stored on TPM. However, there are important considerations and compelling advantages to using much shorter lifetime certificates.

Best Practice

General use client authentication certificates should be enrolled to TPM without exception and have a valid lifetime of no more than one year. However, there is still value in using shorter lifetime certificates, even with TPM. For example, short-lived certificates ensure timely renewal, which can be helpful when implementing changes to certificate templates. A perfect example of this is the changes required to support KB5014754. Administrators may wish to use certificates with validity periods of less than one year to ensure timely replication of certificate settings changes and to provide more frequent key rotation.

Non-TPM

There may be scenarios where a client authentication certificate must be issued to a device without a TPM. Examples include virtual machines without TPM, VDI deployments, and legacy devices. These cases should be treated as exceptions and managed accordingly. Consider shortening the lifetime of non-TPM certificates to 90 days or less.

Privileged Users

Administrators or other privileged accounts enrolling for certificates can benefit from even shorter validity periods. Consider issuing client authentication certificates to these users with certificate lifetimes of 30 days or less.

Considerations

Short-lived certificates aren’t always ideal in all cases. For example, consider a scenario where a user or device is offline for a prolonged period, such as extended vacations, maternity or paternity leave, or sabbaticals. Users may experience issues accessing resources after returning from an extended absence. Of course, if they can re-enroll for certificates, this shouldn’t be a problem. For AD CS, it means connectivity to an enterprise issuing CA server. Intune-managed endpoints simply need Internet access to obtain a new certificate.

Automation

Working with short-lived certificates manually is infeasible. Automation is the key to success with short-lived certificates. For client authentication certificates issued on-premises, enabling certificate autoenrollment via group policy ensures that all domain-joined devices enroll and renew their certificates automatically. Certificates deployed and managed using Microsoft Intune are automated by default.

Summary

The next time you create a certificate template in AD CS or Intune, consider the certificate lifetime. Recommended best practice is no more than one year validity period for 2048-bit RSA end-entity certificates with hardware-backed key storage. However, consider shorter validity periods for those cases where it makes sense. Prioritize TPM enrollment and put additional controls in place for exceptions. Ensure automated enrollment and renewal are in place to reduce administrative overhead. Following the guidance outlined above, your organization will reduce its attack surface and limit exposure to compromised certificates.

More Information

If you’d like to learn more about implementing short-lived certificates in your organization, fill out the form below, and I’ll provide more information.

References

Digital Certificates for Strong Authentication

Digital Certificates and TPM

Drawbacks of Multifactor Authentication

Public Key Cryptography for Initial Authentication (PKINIT) in Kerberos Protocol

Arizona Systems Management User Group March 2025

I’m excited to announce that I’ll be speaking at the Arizona Systems Management User Group (AZSMUG) at their next user group meeting on Friday, March 7, at 9:00 AM MST. I am presenting on the topic of Certificate Deployment Strategies with Microsoft Intune.

Intune and Certificates

My session at AZSMUG will provide an overview of issuing and managing certificates with Microsoft Intune. We’ll begin by examining common scenarios for certificate authentication and explore various delivery methods, including PKCS and SCEP. Additionally, we’ll discuss supporting technologies such as the Network Device Enrollment Service (NDES) and review deployment strategies and high availability options for the Intune Certificate Connector. The session will also cover Cloud PKI for Intune, integration with on-premises Active Directory, and best practices for securing certificate lifecycles and key management in enterprise environments.

Register Now

If you are in the Phoenix area and would like to attend the user group meeting on Friday, March 7, you will find the registration link here. Hope to see you there!

Additional Information

Arizona Systems Management User Group

Intune and Certificates Masterclass