Migrating from Always On VPN DPC Commercial to Open Source

Always On VPN Dynamic Profile Configurator (DPC) is a software solution that enables administrators to deploy and manage Always On VPN client configuration settings using Active Directory and Group Policy or Microsoft Intune. DPC began life as a commercial product. Recently, DPC has been released to the public via open source. DPC open source allows administrators everywhere to deploy the solution without cost. If you’re not using DPC today, I’d strongly recommend it. If you were previously a DPC commercial customer, you’ll want to migrate to DPC open source soon.

Migration

Migrating from DPC commercial to open source requires the administrator to deploy a Group Policy Object (GPO) and client software in a specific order to avoid disruption to end users. Perform the following steps to complete the migration.

GPO Files

Download the DPC v5.0 (open source) group policy settings file (ADMX) file here and the language definition (ADML) file here.

After downloading the files, copy dpc.admx to the following location.

\\<DC name>\sysvol\<domain name>\Policies\PolicyDefinitions

Next, copy dpc.adml to the following location.

\\<DC name>\sysvol\<domain name>\Policies\PolicyDefinitions\en-US

Once complete, allow domain controller replication to finish before deploying DPC group policy settings.

New GPO

Create a new GPO that will contain the VPN client configuration settings. Do NOT copy the original DPC commercial GPO. Starting with a blank GPO is best to ensure proper operation and prevent conflicts. Also, please note the location for DPC settings has changed. The new location for DPC v5.0 settings is:

Computer Configuration > Policies > Administrative Templates > DPC Client

You can now link the GPO to the applicable OU(s) or complete this task before deploying the new software.

Migration Tool

The easiest way to migrate from DPC commercial to open source is to migrate the settings from the current GPO to a new one. A PowerShell script is available to simplify this task. You can download the Migrate-DpcConfig.ps1 PowerShell script here.

Note: It is not strictly required to migrate your current settings from DPC commercial. Although this migration script makes importing settings easier, nothing prevents you from creating a new GPO for DPC open source and starting from scratch if you wish.

Prerequisites

The PowerShell migration script requires the installation of the Remote Server Administration Tools (RSAT). Specifically, the Group Policy Management tools are needed. Although it’s possible to run this script on a domain controller, it is not recommended. The best practice is to install the RSAT tools on an administrative workstation or server.

You can install the necessary RSAT feature on Windows 11 by opening an elevated PowerShell or command window and running the following command.

dism.exe /Online /add-capability /CapabilityName:Rsat.GroupPolicy.Management.Tools~~~~0.0.1.0

On Windows Server, you can install the Group Policy Management tools by opening an elevated PowerShell command window and running the following command.

Install-WindowsFeature -Name GPMC

Once complete, restart the server to complete the installation process.

Import Settings

To migrate the DPC settings, open an elevated PowerShell command window and run the following command.

.\Migrate-DpcSetting.ps1 -PreviousGPOName <name of old DPC GPO> -NewGPOName <name of new DPC GPO>

For example,

.\Migrate-DpcSetting.ps1 -PreviousGPOName ‘Always On VPN DPC’ -NewGPOName ‘Always On VPN DPC – Open Source’

Apply GPO

If not done earlier, link the new DPC open-source GPO to the applicable OU(s). Do NOT unlink or delete the old GPO until all endpoints have been upgraded to the DPC v5.0 client.

Install Software

Once the new GPO has been configured and applied in Active Directory, the next step is to upgrade the DPC commercial client to the DPC open source client (v5.0). Software can be deployed via GPO using Active Directory software installation, SCCM, or any other method you use in your environment to deploy software. No switches or additional parameters are required to perform the upgrade. Simply run the .MSI file on the device, and the upgrade will occur automatically.

Important Note: Administrators must ensure that the new GPO settings are applied to the endpoint before installing the DPC v5.0 client.

Clean Up

After all endpoints have been upgraded to DPC v5.0, administrators can remove the DPC commercial GPO from AD. In addition, the commercial DPC ADMX and ADML files can be removed from domain controllers if desired.

Need Help?

If you’d like assistance migrating DPC commercial to open source, please don’t hesitate to reach out! I’m available to answer questions or provide remote assistance if necessary. You can reach me on the DPC-Chat channel on Discord here. Alternatively, you can fill out the form below, and I’ll provide more information.

Additional Information

PowerON Platforms Are No More

Always On VPN DPC Open Source

Always On VPN DPC Advanced Features

Always On VPN DPC with Microsoft Intune

Microsoft DirectAccess Formally Deprecated

Today, Microsoft has announced the formal deprecation of DirectAccess. Microsoft DirectAccess is a widely deployed enterprise secure remote access solution that provides seamless, transparent, always-on remote network connectivity for managed (domain-joined) Windows clients. First introduced in Windows Server 2008 R2, it’s been a popular solution with many advantages over ordinary VPN technologies of the past.

Windows Server 2012

DirectAccess was almost entirely rewritten in Windows Server 2012. Many of the features and enhancements offered for DirectAccess with the Unified Access Gateway (UAG – a separate product with additional costs) were built into the operating system directly. In addition, Microsoft introduced integrated load balancing and geographic redundancy features.

Demise of DirectAccess

DirectAccess relies heavily on classic on-premises technologies like Active Directory. All DirectAccess servers and clients must be joined to a domain. In addition, all DirectAccess clients must be running the Enterprise edition of Windows. With organizations rapidly adopting cloud services such as Azure and Entra ID, Microsoft began to develop an alternative solution that better integrated with the cloud. That solution is Always On VPN. With that, Microsoft stopped developing DirectAccess after the release of Windows Server 2012 R2. No new features or capabilities have been added to DirectAccess since that time.

Deprecation

We’ve been speculating about the end of life for DirectAccess for quite some time now. However, this formal deprecation announcement from Microsoft is official. It is the end of the road for this technology. To be clear, though, DirectAccess is available today in Windows Server 2022 and Windows 11. DirectAccess will be included in the upcoming release of Windows Server 2025. However, formal deprecation from Microsoft means they will remove DirectAccess components from the next release of the operating system.

What Happens Now?

Organizations should begin formal planning efforts to migrate away from DirectAccess. Here are a few popular solutions to consider.

Always On VPN

Always On VPN is the direct replacement for DirectAccess. It was designed to provide feature parity for DirectAccess, with seamless, transparent, always-on remote network connectivity. However, Always On VPN better integrates with Entra ID and supports conditional access. It does not require domain-joined devices or servers and works well with cloud-native endpoints. Always On VPN is a good choice for organizations that employ hybrid Entra-joined devices.

Entra Private Access

Entra Private Access, part of the Entra Global Secure Access suite, is an identity-centric zero-trust network access (ZTNA) solution from Microsoft. It is in public preview now and has some compelling advantages over traditional VPNs. However, Entra Private Access is not feature complete today. In addition, it is best suited to cloud-native (Entra-joined only) endpoints.

Absolute Secure Access

Absolute Secure Access (formerly NetMotion Mobility) is a premium enterprise remote access solution with many advanced options. It is by far the best solution on the market today. Absolute Secure Access is a software solution that supports zero-trust configuration and includes many features to improve and enhance security, performance, and visibility. In addition, it provides cross-platform support, including Windows, macOS, iOS, and Android operating systems.

Learn More

We have several decades of experience working with secure remote access technologies. We can help you and your organization find the best solution for your needs. Fill out the form below for a free one-hour consultation to discuss your DirectAccess migration strategy today.

Additional Information

Deprecated Features for Windows Client

Microsoft Intune Cloud PKI and Certificate Templates

Microsoft recently announced the general availability of its new PKI-as-a-Service platform called Microsoft Intune Cloud PKI. With Intune Cloud PKI, administrators create certification authorities (CAs) to issue and manage user and device authentication certificates for Intune-managed endpoints. Cloud PKI also provides hosted Authority Information Access (AIA) and Certificate Revocation List (CRL) Distribution Point (CDP) services, in addition to Simple Certificate Enrollment Protocol (SCEP) service, so administrators do not have to deploy on-premises infrastructure to take advantage of certificate-based authentication.

Certificate Templates

After deploying your Intune Cloud PKI root and issuing CAs, you may wonder where to find the associated certificate templates. If you are familiar with traditional on-premises Active Directory Certificate Services (AD CS) implementations, this is how you define the purpose, key policy, security parameters, and lifetime of the certificate issued using that template. However, Intune Cloud PKI does not use certificate templates in the traditional way many administrators are familiar with.

Note: Microsoft may introduce support for certificate templates for Intune Cloud PKI in the future. However, it is not supported at the time of this writing.

SCEP Profile

Administrators define certificate policies and security parameters using Intune’s SCEP device configuration profile instead of certificate templates. In essence, the SCEP profile functions as the certificate template. With the Intune device configuration profile, administrators can define the following settings.

Certificate Type

The certificate type can be either a user or a device. Intune Cloud PKI can issue certificates for either or both, as required.

Subject Name (User)

The subject name is unimportant for user authentication certificates because the User Principal Name (UPN) defined in the Subject Alternative Name field is used to authenticate the user. In this field, the administrator can use whatever they like. However, it’s common to use the username here. Avoid using the email attribute here because there’s no guarantee that every user will have this defined on the Active Directory (AD) user object.

Subject Name (Device)

Administrators should supply the device’s fully qualified domain name (FQDN) for device authentication certificates in the subject name field. For hybrid Entra joined devices, administrators can use the {{FullyQualifiedDomainName}} variable. For native Entra-joined devices, you can use {{DeviceName}} and append your DNS suffix, for example, {{DeviceName}}.corp.example.net.

Note: Intune supports numerous variables to populate fields for certificates. You can find a list of supported variables in the following locations.

User Certificate Variables: https://learn.microsoft.com/en-us/mem/intune/protect/certificates-profile-scep#create-a-scep-certificate-profile:~:text=Manager%20blog%20post.-,User%20certificate%20type,-Use%20the%20text

Device Certificate Variables: https://learn.microsoft.com/en-us/mem/intune/protect/certificates-profile-scep#create-a-scep-certificate-profile:~:text=on%20the%20device.-,Device%20certificate%20type,-Format%20options%20for

Subject Alternative Name (User)

The Subject Alternative Name (SAN) field for user authentication certificates should be populated with the User Principal Name (UPN) value. Ensure this value is appropriately configured internally and supports sign-in to AD.

Subject Alternative Name (Device)

The SAN field for device authentication certificates should be populated with the device’s FQDN. Follow the guidance for device subject names covered previously.

Certificate Validity Period

This field allows the administrator to define the certificate’s validity period. The best practice is to limit the lifetime to no more than one year. A shorter lifetime is recommended for certificates not backed by a Trusted Platform Module (TPM).

Key Storage Provider

This value is critical to ensuring integrity for issued user and device authentication certificates. The best practice is to select Enroll to Trusted Platform Module (TPM) KSP, otherwise fail. However, if you must issue certificates to endpoints without a TPM (e.g., legacy devices, virtual machines, etc.), consider a separate profile with a shorter certificate lifetime to limit exposure.

Key Usage

Digital signature and Key encipherment are required for user and device authentication certificates.

Key Size

The 2048-bit key size is the minimum recommended value for certificates with RSA keys. Using 4096-bit is not recommended for end-entity certificates and can potentially cause conflicts in some cases. Intune Cloud PKI does not support the 1024-bit key size.

Hash Algorithm

SHA-2 is the best practice for the hash algorithm. SHA-1 has been deprecated and should not be used.

Root Certificate

Select the Cloud PKI root CA certificate.

Extended Key Usage

The minimum requirement for user and device authentication certificates is Client Authentication (1.3.6.1.5.5.7.3.2).

Renewal Threshold

This value specifies at what point the certificate can be renewed. 20% is commonly used for certificates with a one-year lifetime.

SCEP Server URLs

This value can be found on the configuration properties page of your Cloud PKI issuing CA. The URI will include a variable in the URL. The variable is there by design. Copy and paste this URL exactly as displayed in the SCEP URL field.

Training

Are you interested in learning more about issuing and managing certificates with Microsoft Intune? Would you like to know how to securely and optimally implement PKCS and SCEP infrastructure on-premises? Do you want more details about deploying and managing Microsoft Intune Cloud PKI? Register now for my upcoming three-day live Certificates and Intune Masterclass training event at the ViaMonstra online training academy. We’ll deep-dive into all aspects of certificate management using Intune with on-premises AD CS and Intune Cloud PKI. I’ll be sharing many advanced techniques for adequately securing your certificate infrastructure. Space is limited, so register now!

Additional Information

Mastering Certificates with Intune Training Course

Microsoft Intune Cloud PKI Overview

Microsoft Intune Cloud PKI and Active Directory

Microsoft Intune Certificate Connector Failure

Microsoft Intune Certificate Connector Configuration Failed

Microsoft Intune Certificate Connector Configuration Failure

Microsoft Intune Certificate Connector Service Account and PKCS