Always On VPN Updates to Improve Connection Reliability

Always On VPN Updates to Improve Connection ReliabilityA longstanding issue with Windows 10 Always On VPN is that of VPN tunnel connectivity reliability and device tunnel/user tunnel interoperability. Many administrators have reported that Always On VPN connections fail to establish automatically at times, that only one tunnel comes up at a time (user tunnel or device tunnel, but not both), or that VPN tunnels fail to establish when coming out of sleep or hibernate modes. Have a look at the comments on this post and you’ll get a good understanding of the issues with Always On VPN.

Recent Updates

The good news is that most of these issues have been resolved with recent updates to Windows 10 1803 and 1809. Specifically, the February 19, 2019 update for Windows 10 1803 (KB4487029) and the March 1, 2019 update for Windows 10 1809 (KB4482887) include fixes to address these known issues. Administrators are encouraged to deploy Windows 10 1803 with the latest updates applied when implementing Always On VPN. Windows 10 1809 with the latest updates applied is preferred though.

Persistent Issues

Although initial reports are favorable for these updates and based on my experience the effectiveness and reliability of Windows 10 Always On VPN is greatly improved, there have still been some reports of intermittent VPN tunnel establishment failures.

Possible Causes

During my testing, after applying the updates referenced earlier both device tunnel and user tunnel connections are established much more consistently than before the updates were applied. I did encounter some issues, however. Specifically, when coming out of sleep or hibernate, VPN connections would fail to establish. Occasionally VPN connections would fail after a complete restart.

NCSI

After further investigation it was determined that the connectivity failure was caused by the Network Connectivity Status Indicator (NCSI) probe failing, causing Windows to report “No Internet access”.

Always On VPN Updates to Improve Connection Reliability

Cisco Umbrella Roaming Client

In this instance the NCSI probe failure was caused by the Cisco Umbrella Roaming Client installed and running on the device. The Umbrella Roaming Client is security software that provides client protection by monitoring and filtering DNS queries. It operates by configuring a DNS listener on the loopback address. NCSI probes are known to fail when the DNS server is running on a different interface than is being tested.

Resolution

Microsoft released a fix for this issue in Windows 10 1709. The fix involves changing a group policy setting to disable interface binding when perform DNS lookups by the NCSI. You can enable this setting via Active Directory group policy by navigating to Computer Configuration > Administrative Templates > Network > Network Connectivity Status Indicator > Specify global DNS. Select Enabled and check the option to Use global DNS, as shown here.

Always On VPN Updates to Improve Connection Reliability

For testing purposes this setting can be enabled individual using the following PowerShell command.

New-ItemProperty -Path “HKLM:\SOFTWARE\Policies\Microsoft\Windows\NetworkConnectivityStatusIndicator\” -Name UseGlobalDNS -PropertyType DWORD -Value 1 -Force

Third-Party Software

As Always On VPN connectivity can be affected by NCSI, any third-party firewall or antivirus/antimalware solution could potentially introduce VPN connection instability. Observe NCSI operation closely when troubleshooting unreliable connections with Always On VPN.

Additional Information

Windows 10 1803 Update KB4487029

Windows 10 1809 Update KB4482887

Cisco Umbrella Roaming Client Limited Network Connectivity Warning

Network Connectivity Status Indicator (NCSI) Operation Explained

Always On VPN Multisite with Azure Traffic Manager

Always On VPN Multisite with Azure Traffic ManagerEliminating single points of failure is crucial to ensuring the highest levels of availability for any remote access solution. For Windows 10 Always On VPN deployments, the Windows Server 2016 Routing and Remote Access Service (RRAS) and Network Policy Server (NPS) servers can be load balanced to provide redundancy and high availability within a single datacenter. Additional RRAS and NPS servers can be deployed in another datacenter or in Azure to provide geographic redundancy if one datacenter is unavailable, or to provide access to VPN servers based on the location of the client.

Multisite Always On VPN

Unlike DirectAccess, Windows 10 Always On VPN does not natively include support for multisite. However, enabling multisite geographic redundancy can be implemented using Azure Traffic Manager.

Azure Traffic Manager

Traffic Manager is part of Microsoft’s Azure public cloud solution. It provides Global Server Load Balancing (GSLB) functionality by resolving DNS queries for the VPN public hostname to an IP address of the most optimal VPN server.

Advantages and Disadvantages

Using Azure Traffic manager has some benefits, but it is not with some drawbacks.

Advantages – Azure Traffic Manager is easy to configure and use. It requires no proprietary hardware to procure, manage, and support.

Disadvantages – Azure Traffic Manager offers only limited health check options. Today, only HTTP, HTTP, and TCP protocols can be used to perform endpoint health checks. There is no option to use UDP or PING, making monitoring for IKEv2 a challenge.

Note: This scenario assumes that RRAS with Secure Socket Tunneling Protocol (SSTP) or another third-party TLS-based VPN server is in use. If IKEv2 is to be supported exclusively, it will still be necessary to publish an HTTP or HTTPS-based service for Azure Traffic Manager to monitor site availability.

Traffic Routing Methods

Azure Traffic Manager provide four different methods for routing traffic.

Priority – Select this option to provide active/passive failover. A primary VPN server is defined to which all traffic is routed. If the primary server is unavailable, traffic will be routed to another backup server.

Weighted – Select this option to provide active/active failover. Traffic is routed to all VPN servers equally, or unequally if desired. The administrator defines the percentage of traffic routed to each server.

Performance – Select this option to route traffic to the VPN server with the lowest latency. This ensures VPN clients connect to the server that responds the quickest.

Geographic – Select this option to route traffic to a VPN server based on the VPN client’s physical location.

Multivalue – Select this option when endpoints must use IPv4 or IPv6 addresses.

Subnet – Select this option to map DNS responses to the client’s source IP address.

Configure Azure Traffic Manager

Open the Azure management portal and follow the steps below to configure Azure Traffic Manager for multisite Windows 10 Always On VPN.

Create a Traffic Manager Resource

  1. Click Create a resource.
  2. Click Networking.
  3. Click Traffic Manager profile.

Create a Traffic Manager Profile

  1. Enter a unique name for the Traffic Manager profile.
  2. Select an appropriate routing method (described above).
  3. Select a subscription.
  4. Create or select a resource group.
  5. Select a resource group location.
  6. Click Create.

Always On VPN Multisite with Azure Traffic Manager

Important Note: The name of the Traffic Manager profile cannot be used by VPN clients to connect to the VPN server, since a TLS certificate cannot be obtained for the trafficmanager.net domain. Instead, create a CNAME DNS record that points to the Traffic Manager FQDN and ensure that name matches the subject or a Subject Alternative Name (SAN) entry on the VPN server’s TLS and/or IKEv2 certificates.

Endpoint Monitoring

Open the newly created Traffic Manager profile and perform the following tasks to enable endpoint monitoring.

  1. Click Configuration.
  2. Select HTTPS from the Protocol drop-down list.
  3. Enter 443 in the Port field.
  4. Enter /sra_%7BBA195980-CD49-458b-9E23-C84EE0ADCD75%7D/ in the Path field.
  5. Enter 401-401 in the Expected Status Code Ranges field.
  6. Update any additional settings, such as DNS TTL, probing interval, tolerated number of failures, and probe timeout, as required.
  7. Click Save.

aovpn_traffic_manager_multisite_001

Endpoint Configuration

Follow the steps below to add VPN endpoints to the Traffic Manager profile.

  1. Click Endpoints.
  2. Click Add.
  3. Select External Endpoint from the Type drop-down list.
  4. Enter a descriptive name for the endpoint.
  5. Enter the Fully Qualified Domain Name (FQDN) or the IP address of the first VPN server.
  6. Select a geography from the Location drop-down list.
  7. Click OK.
  8. Repeat the steps above for any additional datacenters where VPN servers are deployed.

Always On VPN Multisite with Azure Traffic Manager

Summary

Implementing multisite by placing VPN servers is multiple physical locations will ensure that VPN connections can be established successfully even when an entire datacenter is offline. In addition, active/active scenarios can be implemented, where VPN client connections can be routed to the most optimal datacenter based on a variety of parameters, including current server load or the client’s current location.

Additional Information

Windows 10 Always On VPN Hands-On Training Classes

Always On VPN Client DNS Server Configuration

Always On VPN Client DNS Server ConfigurationDNS server configuration for Windows 10 Always On VPN clients is crucial to ensuring full access to internal resources. For Always On VPN, there are a few different ways to assign a DNS server to VPN clients.

Default DNS Servers

By default, Windows 10 clients use the same DNS server the VPN server is configured to use. This is true even if the VPN client IP address assignment method is DHCP.

Always On VPN Client DNS Server Configuration

There may be some scenarios in which this is not appropriate. For example, if the DNS server is in a DMZ network and is not configured to use internal Active Directory domain DNS servers, clients will be unable to access internal resources.

DNS Server Assignment

To configure Windows 10 Always On VPN clients to use DNS servers other than those configured on the VPN server, configure the DomainNameInformation element in the ProfileXML, as shown here.

<VPNProfile>
   <DomainNameInformation>
      <DomainName>.corp.example.net</DomainName>
      <DnsServers>10.21.12.100,10.21.12.101</DnsServers>
   </DomainNameInformation>
</VPNProfile>

Note: Be sure to include the lading “.” In the domain name to ensure that all hosts and subdomains are included.

Always On VPN Client DNS Server Configuration

Reference: https://docs.microsoft.com/en-us/windows/client-management/mdm/vpnv2-csp

DNS and NRPT

Once the DomainNameInformation element has been defined, the new DNS server assignment does NOT appear on the VPN virtual adapters interface. In fact, it will still be configured to use the DNS server assigned to the VPN server, just as before. Using the DomainNameInformation element instead configures the Name Resolution Policy Table (NRPT) and assigns the new DNS server to the namespace defined by the administrator. You can view the NRPT running the Get-DnsClientNrptPolicy PowerShell command.

Always On VPN Client DNS Server Configuration

Additional Information

Windows 10 Always On VPN and the Name Resolution Policy Table (NRPT)

Deploying Windows 10 Always On VPN with Microsoft Intune

Windows 10 Always On VPN Certificate Requirements for IKEv2

Windows 10 Always On VPN Hands-On Training