Windows Server DNS64 and IPv6 Only

Many organizations are modernizing their networks by migrating from legacy IPv4 to IPv6. The goal is to replace IPv4 with IPv6 entirely. However, even though an organization can successfully migrate to IPv6-only networks internally, they do not control networks outside its boundaries. In some cases, a host on an IPv6-only network may need to communicate with an IPv4 resource. Administrators must deploy an IPv6 transition technology to support this scenario. A common solution to address this need is DNS64 and NAT64.

What are DNS64 and NAT64?

DNS64 and NAT64, defined in RFCs 6147 and 6146, respectively, work together to ensure endpoints on an IPv6-only network can still communicate with IPv4-only resources. DNS64 enables IPv6-only clients to communicate with IPv4-only servers by synthesizing AAAA DNS records from A records. When an IPv6-only client queries a domain with only an IPv4 address (A record), the DNS64 server creates a synthetic IPv6 address by embedding the IPv4 address within an administrator-defined NAT64 IPv6 prefix. The default (referred to as ‘well known’) prefix is 64:ff9b::/96. In the example below, the IPv4-only resource ipv4.test-ipv6.com is resolved using the Cloudflare public DNS64 resolver.

Using the synthetic DNS64 address allows the client to send IPv6 packets to a NAT64 gateway, which translates them to IPv4 for the destination server. DNS64 ensures seamless address resolution for IPv6-only networks accessing IPv4 resources without requiring actual IPv6 addresses for the target.

Caveat

While DNS64 is great for ensuring IPv4 access on IPv6-only networks, it has one critical limitation. The client must connect to a resource using a hostname or a fully qualified domain name. If a client attempts to connect to an IPv4 resource directly (e.g., https://172.16.21.12 or \\10.21.12.83\data), the resource will be unreachable. To address this limitation, the 464XLAT IPv6 transition technology must be used. For more information about 464XLAT, see my previous article, Windows Server DHCP and Option 108.

Enterprise DNS64

While there are public DNS64 resolves from Cloudflare, Google, and others, they aren’t helpful when trying to resolve internal hostnames in the enterprise. Organizations must deploy their own private DNS64 services in this scenario.

Windows Server and DNS64

Today, Windows Server does not natively support DNS64. Organizations are advised to use an enterprise DNS solution such as Infoblox or BlueCat for DNS64 services. Alternatively, administrators can deploy BIND DNS on the Linux platform of their choice. DNS64 is supported in BIND 9.8.0 and later.

DNS64 Proxy

To support testing and evaluation (and perhaps production deployment for smaller organizations), it is possible to configure any supported version of Windows Server to serve as a DNS64 proxy. In this scenario, a Windows Server is configured as a DNS64 server, but the server itself is not an actual DNS server. It does not have a DNS database or zone file; it is not authoritative for any zones and can’t perform conditional forwarding. It simply forwards DNS queries to the servers defined on its own network interface.

Windows Server DNS64 Configuration

The DNS64 service must be installed using PowerShell and the Set-NetDnsTransitionConfiguration command. Administrators will define some variables, configure DNS64, and create firewall rules to allow DNS traffic inbound to the server.

Configure DNS64

On a Windows Server member server (domain-join is optional), open an elevated PowerShell command window and run the following commands.

# Define variables
$AcceptInterface = ‘Ethernet’ # The interface name or alias that will accept DNS64 traffic
$SendInterface = ‘Ethernet’ # The interface name or alias that will send DNS64 traffic
$Nat64Prefix = ’64:ff9b::/96′ # The NAT64 prefix

# Configure DNS64
Set-NetDnsTransitionConfiguration -State Enabled -AcceptInterface $AcceptInterface -SendInterface $SendInterface -PrefixMapping “$Nat64Prefix,0.0.0.0/0” -PassThru

Configure Windows Firewall

Run the following PowerShell commands to configure the Windows Firewall to allow inbound DNS requests.

# Create firewall rules to allow DNS64 traffic inbound
New-NetFirewallRule -Name ‘DNSSrv-DNS-UDP-In’ -DisplayName ‘DNS (UDP, Incoming)’ -Description ‘Inbound rule to allow remote UDP access to the DNS64 service.’ -Group ‘DNS64 Service’ -Protocol UDP -LocalPort 53 -Direction Inbound -Profile Any -Action Allow -Enabled True

New-NetFirewallRule -Name ‘DNSSrv-DNS-TCP-In’ -DisplayName ‘DNS (TCP, Incoming)’ -Description ‘Inbound rule to allow remote TCP access to the DNS64 service.’ -Group ‘DNS64 Service’ -Protocol TCP -LocalPort 53 -Direction Inbound -Profile Any -Action Allow -Enabled True

GitHub

For reference, I’ve posted the relevant commands for configuring DNS64 on Windows Server on GitHub here.

DNS64 Testing

Once DNS64 is configured on the Windows Server, administrators can test operation by sending a DNS query for an IPv4-only resource to the DNS64 server using the following PowerShell command.

Resolve-DnsName -Name ipv4.test-ipv6.com -Server <DNS64 server IPv6 address>

For example.

Resolve-DnsName -Name ipv4.test-ipv6.com -Server 2001:579:6024:510::64

The DNS64 server responds with the native IPv4 address along with the synthesized IPv6 address. However, if the target resource has only an IPv6 address or has both IPv4 and IPv6 addresses, both are returned, as shown below.

Summary

DNS64 and NAT64 are essential tools for enabling communication between IPv6-only networks and IPv4 resources. While public resolvers exist, enterprises often need their own DNS64 service for internal hostname resolution. Windows Server does not natively support DNS64, but administrators can configure it as a DNS64 proxy for testing and smaller deployments. In this scenario, Windows Server can provide DNS64 functionality, helping organizations transition toward IPv6-only networks while maintaining access to legacy IPv4 systems.

Additional Information

IPv6 Transition Technology Options – IPv6 Buzz Podcast

Set-NetDnsTransitionConfiguration

RFC 6146 – NAT64

RFC 6147 – DNS64

RFC 6877 – 464XLAT

Windows Server DHCP and Option 108

What is IPv6?

DirectAccess Manage Out with ISATAP and NLB Clustering

DirectAccess Manage Out with ISATAP and NLB ClusteringDirectAccess connections are bidirectional, allowing administrators to remotely connect to clients and manage them when they are out of the office. DirectAccess clients use IPv6 exclusively, so any communication initiated from the internal network to remote DirectAccess clients must also use IPv6. If IPv6 is not deployed natively on the internal network, the Intrasite Automatic Tunnel Addressing Protocol (ISATAP) IPv6 transition technology can be used to enable manage out.

ISATAP Supportability

According to Microsoft’s support guidelines for DirectAccess, using ISATAP for manage out is only supported for single server deployments. ISATAP is not supported when deployed in a multisite or load-balanced environment.

Not supported” is not the same as “doesn’t work” though. For example, ISATAP can easily be deployed in single site DirectAccess deployments where load balancing is provided using Network Load Balancing (NLB).

ISATAP Configuration

To do this, you must first create DNS A resource records for the internal IPv4 address for each DirectAccess server as well as the internal virtual IP address (VIP) assigned to the cluster.

DirectAccess Manage Out with ISATAP and NLB Clustering

Note: Do NOT use the name ISATAP. This name is included in the DNS query block list on most DNS servers and will not resolve unless it is removed. Removing it is not recommended either, as it will result in ALL IPv6-enabled hosts on the network configuring an ISATAP tunnel adapter.

Once the DNS records have been added, you can configure a single computer for manage out by opening an elevated PowerShell command window and running the following command:

Set-NetIsatapConfiguration -State Enabled -Router [ISATAP FQDN] -PassThru

DirectAccess Manage Out with ISATAP and NLB Clustering

Once complete, an ISATAP tunnel adapter network interface with a unicast IPv6 address will appear in the output of ipconfig.exe, as shown here.

DirectAccess Manage Out with ISATAP and NLB Clustering

Running the Get-NetRoute -AddressFamily IPv6 PowerShell command will show routes to the client IPv6 prefixes assigned to each DirectAccess server.

DirectAccess Manage Out with ISATAP and NLB Clustering

Finally, verify network connectivity from the manage out host to the remote DirectAccess client.

Note: There is a known issue with some versions of Windows 10 and Windows Server 2016 that may prevent manage out using ISATAP from working correctly. There’s a simple workaround, however. More details can be found here.

Group Policy Deployment

If you have more than a few systems on which to enable ISATAP manage out, using Active Directory Group Policy Objects (GPOs) to distribute these settings is a much better idea. You can find guidance for creating GPOs for ISATAP manage out here.

DirectAccess Client Firewall Configuration

Simply enabling ISATAP on a server or workstation isn’t all that’s required to perform remote management on DirectAccess clients. The Windows firewall running on the DirectAccess client computer must also be configured to securely allow remote administration traffic from the internal network. Guidance for configuring the Windows firewall on DirectAccess clients for ISATAP manage out can be found here.

ISATAP Manage Out for Multisite and ELB

The configuration guidance in this post will not work if DirectAccess multisite is enabled or external load balancers (ELB) are used. However, ISATAP can still be used. For more information about enabling ISATAP manage out with external load balancers and/or multisite deployments, fill out the form below and I’ll provide you with more details.

Summary

Once ISATAP is enabled for manage out, administrators on the internal network can remotely manage DirectAccess clients wherever they happen to be. Native Windows remote administration tools such as Remote Desktop, Windows Remote Assistance, and the Computer Management MMC can be used to manage remote DirectAccess clients. In addition, enterprise administration tools such as PowerShell remoting and System Center Configuration Manger (SCCM) Remote Control can also be used. Further, third-party remote administration tools such as VNC, TeamViewer, LogMeIn, GoToMyPC, Bomgar, and many others will also work with DirectAccess ISATAP manage out.

Additional Information

ISATAP Recommendations for DirectAccess Deployments

DirectAccess Manage Out with ISATAP Fails on Windows 10 and Windows Server 2016 

DirectAccess Client Firewall Rule Configuration for ISATAP Manage Out

DirectAccess Manage Out and System Center Configuration Manager (SCCM)

Contact Me

Interested in learning more about ISATAP manage out for multisite and external load balancer deployments? Fill out the form below and I’ll get in touch with you.

Go back

Your message has been sent

Warning
Warning
Warning

Warning.

DirectAccess and FIPS Compliant Algorithms for Encryption

DirectAccess administrators may be required to enable Federal Information Processing Standards (FIPS) compliant algorithms for encryption, hashing, and signing on DirectAccess servers to meet certain regulatory and compliance requirements.

DirectAccess and FIPS Compliant Algorithms for Encryption

Performance Impact

Be advised that enabling this setting will disable support for null cipher suites for the IP-HTTPS IPv6 transition technology. This will result in the double encryption of all DirectAccess client communication, which will increase resource consumption on DirectAccess servers. This leads to reduced scalability and degraded performance for all DirectAccess clients, including Windows 8.x and Windows 10.

If enabling FIPS compliant cannot be avoided, additional compute capacity (CPU and memory) should be provisioned. For best results, add additional servers to distribute the workload and improve performance for DirectAccess clients.

Always On VPN

If you’re looking for better security and performance, consider migrating to Windows 10 Always On VPN. Always On VPN fully supports FIPS compliant algorithms without the negative performance impact associated with DirectAccess. If you’d like to learn more about security and Always On VPN, fill out the form below and I’ll get in touch with you.

Additional Resources

Always On VPN and the Future of DirectAccess 

5 Things DirectAccess Administrators Should Know About Always On VPN 

3 Important Advantages of Always On VPN over DirectAccess 

Go back

Your message has been sent

Warning
Warning
Warning

Warning.