Always On VPN Options for Azure Deployments

Always On VPN Options for Azure DeploymentsOrganizations everywhere are rapidly adopting Microsoft Azure public cloud infrastructure to extend or replace their existing datacenter. As traditional on-premises workloads are migrated to the cloud, customers are looking for options to host VPN services there as well.

Windows Server

Windows Server with the Routing and Remote Access Service (RRAS) installed is a popular choice for on-premises Always On VPN deployments. Intuitively it would make sense to deploy Windows Server and RRAS in Azure as well. However, at the time of this writing, RRAS is not a supported workload on Windows Server in Azure.

Always On VPN Options for Azure Deployments

Reference: https://support.microsoft.com/en-us/help/2721672/microsoft-server-software-support-for-microsoft-azure-virtual-machines/

Although explicitly unsupported, it is possible to deploy Windows Server and RRAS in Azure for Always On VPN. In my experience it works well and can be an option for organizations willing to forgo formal support by Microsoft.

Azure Gateway

Options for supporting Always On VPN connections using native Azure VPN infrastructure depend on the type of VPN gateway chosen.

VPN Gateway

The Azure VPN Gateway can be configured to support client-based (point-to-site) VPN. With some additional configuration it can be used to support Windows 10 Always On VPN deployments. Azure VPN gateway supports both IKEv2 and SSTP VPN protocols for client connections. The Azure VPN gateway has some limitations though. Consider the following:

  • A route-based VPN gateway is required
  • A maximum of 1000 concurrent IKEv2 connections are supported when using the VpnGw3 or VpnGw3AZ SKUs (2000 supported in active/active mode)
  • A maximum of 128 concurrent SSTP connections are supported on all gateway SKUs (256 supported in active/active mode)

Virtual WAN

Azure Virtual WAN is the future of remote connectivity for Azure. It includes support for client-based VPN (currently in public preview at the time of this writing), but only supports IKEv2 and OpenVPN VPN protocols for client connections. SSTP is not supported at all. Further, OpenVPN is not supported for Windows 10 Always On VPN, leaving IKEv2 as the only option, which poses some potential operational challenges. Virtual WAN offer much better scalability though, supporting up to 10,000 concurrent client-based VPN connections.

Virtual Appliance

The most supportable option for hosting VPN services in Azure for Windows 10 Always On VPN is to deploy a third-party Network Virtual Appliance (NVA). They are available from a variety of vendors including Cisco, Check Point, Palo Alto Networks, Fortinet, and many others. To support Windows 10 Always On VPN, the NVA vendor must either support IKEv2 for client-based VPN connections or have a Universal Windows Platform (UWP) VPN plug-in client available from the Microsoft store. Click here to learn more about Always On VPN and third-party VPN devices.

Note: Be careful when choosing an NVA as some vendors support IKEv2 only for site-to-site VPN, but not client-based VPN!

Hybrid Deployments

For organizations with hybrid cloud deployments (infrastructure hosted on-premises and in Azure), there are several options for choosing the best location to deploy VPN services. In general, it is recommended that client VPN connections be established nearest the resources accessed by remote clients. However, having VPN servers hosted both on-premises and in Azure is fully supported. In this scenario Azure Traffic Manager can be configured to intelligently route VPN connections for remote clients.

NetMotion Mobility

The NetMotion Mobility purpose-built enterprise VPN is a popular replacement for Microsoft DirectAccess. It is also an excellent alternative for enterprise organizations considering a migration to Always On VPN. It is a software-based solution that can be deployed on Windows Server and is fully supported running in Microsoft Azure. It offers many advanced features and capabilities not included in other remote access solutions.

Summary

Administrators have many options for deploying VPN servers in Azure to support Windows 10 Always On VPN. Windows Server and RRAS is the simplest and most cost-effective option, but it is not formally supported by Microsoft. Azure VPN gateway is an interesting alternative but lacks enough capacity for larger deployments. Azure Virtual WAN is another option but has limited protocol support. Deploying an NVA is a good choice, and NetMotion Mobility is an excellent alternative to both DirectAccess and Always On VPN that is software-based and fully supported in Azure.

Additional Information

Windows 10 Always On VPN and Third-Party VPN Devices

Windows 10 Always On VPN and Windows Server Routing and Remote Access Service (RRAS)

Windows 10 Always On VPN IKEv2 Features and Limitations

Windows 10 Always On VPN Multisite with Azure Traffic Manager

Comparing DirectAccess and NetMotion Mobility

Deploying NetMotion Mobility in Microsoft Azure

 

Always On VPN IKEv2 Features and Limitations

Always On VPN IKEv2 Features and LimitationsThe Internet Key Exchange version 2 (IKEv2) VPN protocol is a popular choice for Windows 10 Always On VPN deployments. IKEv2 is a standards-based IPsec VPN protocol with customizable security parameters that allows administrators to provide the highest level of protection for remote clients. In addition, it provides important interoperability with a variety of VPN devices, including Microsoft Windows Server Routing and Remote Access Service (RRAS) and non-Microsoft platforms such as Cisco, Checkpoint, Palo Alto, and others.

IKEv2 Limitations

IKEv2 is clearly the protocol of choice in terms of security. It supports modern cryptography and is highly resistant to interception. It’s not without some operational challenges, however. Consider the following.

Firewalls

IKEv2 uses UDP ports 500 and 4500 for communication. Unfortunately, these ports are not always open. Often, they are blocked by network administrators to prevent users from bypassing security controls or attackers from exfiltrating data.

Fragmentation

IKEv2 packets can become quite large at times, especially when using client certificate authentication with the Protected Extensible Authentication Protocol (PEAP). This can result in fragmentation occurring at the network layer. Unfortunately, many firewalls and network devices are configured to block IP fragments by default. This can result in failed connection attempts from some locations but not others.

Load Balancing

Load balancing IKEv2 connections is not entirely straightforward. Without special configuration, load balancers can cause intermittent connectivity issues for Always On VPN connections. Guidance for configuring IKEv2 load balancing on the Kemp LoadMaster and the F5 BIG-IP can be found here:

IKEv2 Fragmentation

IKEv2 fragmentation can be enabled to avoid IP fragmentation and restore reliable connectivity. IKEv2 fragmentation is supported in Windows 10 and Windows Server beginning with v1803. Guidance for enabling IKEv2 fragmentation on Windows Server RRAS can be found here. Support for IKEv2 fragmentation on non-Microsoft firewall/VPN devices is vendor-specific. Consult with your device manufacturer for more information.

IKEv2 Security and RRAS

Be advised that the default security settings for IKEv2 on Windows Server RRAS are very poor. The minimum recommended security settings and guidelines for implementing them can be found here.

IKEv2 or TLS?

IKEv2 is recommend for deployments where the highest level of security and protection is required for remote connections. In these scenarios, the sacrifice of ubiquitous availability in favor of ultimate security might be desired.

SSTP or another TLS-based VPN protocol is recommended if reliable operation and connectivity are desired. SSTP and TLS VPNs can be configured to provide very good security by following the security and implementation guidelines found here.

IKEv2 with TLS Fallback

In theory, preferring IKEv2 and falling back to the Secure Socket Tunneling Protocol (SSTP) or another TLS-based VPN protocol when IKEv2 is unavailable would seem like a logical choice. This would ensure the highest level of protection, while still providing reliable connectivity. Unfortunately, the Windows VPN client doesn’t work this way in practice. Details here.

Additional Information

Windows 10 Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Windows 10 Always On VPN IKEv2 Load Balancing with Kemp LoadMaster

Windows 10 Always On VPN IKEv2 Fragmentation

Windows 10 Always On VPN IKEv2 and SSTP Fallback

Windows 10 Always On VPN IKEv2 Security Configuration

Windows 10 Always On VPN Certificate Requirements for IKEv2

Windows 10 Always On VPN Protocol Recommendations for Windows Server RRAS

3 Important Advantages of Always On VPN over DirectAccess

3 Important Advantages of Always On VPN over DirectAccess Windows 10 Always On VPN hands-on training classes now forming. Details here.

Windows 10 Always On VPN provides seamless and transparent, always on remote network access similar to DirectAccess. The mechanics of how it is delivered and managed are fundamentally different, as I discussed here. Some of these changes will no doubt present challenges to our way of thinking, especially in the terms of client provisioning. However, Always On VPN brings along with it some important and significant advantages too.

No More NLS

A Network Location Server (NLS) is used for inside/outside detection by DirectAccess clients. By design, the NLS is reachable by DirectAccess machines only when they are on the internal network. NLS availability is crucial. If the NLS is offline or unreachable for any reason at all, DirectAccess clients on the internal network will mistakenly believe they are outside the network. In this scenario, the client will attempt to establish a DirectAccess connection even though it is inside. This often fails, leaving the DirectAccess client in a state where it cannot connect to any internal resources by name until the NLS is brought back online.

Always On VPN eliminates the frailty of NLS by using the DNS connection suffix for trusted network detection. When a network connection is established, an Always On VPN connection will not be established if the DNS connection suffix matches what the administrator has defined as the internal trusted network.

Full Support for IPv4

DirectAccess uses IPv6 exclusively for communication between remote DirectAccess clients and the DirectAccess server. IPv6 translation technologies allow for communication to internal IPv4 hosts. While this works for the vast majority of scenarios, there are still many challenges with applications that do not support IPv6.

Always On VPN supports both IPv4 and IPv6, so application incompatibility issues will be a thing of the past! With full support for IPv4, the need for IPv6 transition and translation technologies is eliminated. This reduces protocol overhead and improves network performance.

Infrastructure Independent

3 Important Advantages of Always On VPN over DirectAccess Windows servers are required to implement DirectAccess. Always On VPN can be implemented using Windows servers as well, but it isn’t a hard requirement. Always On VPN is implemented entirely on the Windows 10 client, which means any third-party VPN device can be used on the back end, including Cisco, Checkpoint, Juniper, Palo Alto, Fortinet, SonicWALL, F5, strongSwan, and others! This provides tremendous deployment flexibility, making it possible to mix and match backend infrastructure if required. For example, a Windows RRAS VPN server with Palo Alto and SonicWALL firewalls could all be implemented at the same time (using the Windows built-in VPN client). Importantly, making changes to VPN infrastructure is much less impactful and disruptive to clients in the field. VPN devices can be upgraded, replaced, and moved internally without requiring corresponding policy changes on the client.

Additional Information

Always On VPN and the Future of Microsoft DirectAccess 

5 Things DirectAccess Administrators Should Know about Always On VPN 

Contact Me

Have questions about Windows 10 Always On VPN? Interested in learning more about this new solution? Fill out the form below and I’ll get in touch with you.

%d bloggers like this: