Microsoft Intune Cloud PKI

Recently, Microsoft introduced the general availability of its new PKI-as-a-service solution called Microsoft Intune Cloud PKI. Cloud PKI allows administrators to issue and manage user and device authentication certificates for Intune-managed endpoints without deploying Active Directory Certificate Services (AD CS) on-premises. Cloud PKI frees administrators from the burdens of deploying and managing AD CS, including the complicated Network Device Enrollment Service (NDES) server configuration required for Simple Certificate Enrollment Protocol (SCEP) certificate deployment with Intune.

Advantages

Microsoft Intune Cloud PKI offers many significant advantages over traditional on-premises AD CS deployments.

No Infrastructure

The most obvious advantage of using Cloud PKI is that you do not have to deploy and manage your own Certification Authority (CA). Although implementing AD CS isn’t that difficult, managing and operating a CA infrastructure securely can be quite challenging. In addition, a high-security AD CS deployment utilizes hardware secure modules (HSMs) to protect CA private keys, which are quite expensive and sometimes difficult to support.

Cloud-Hosted SCEP

Removing the requirement to configure and deploy your own NDES server to support SCEP certificates is certainly a welcome advantage. NDES is notoriously difficult to configure, secure, and troubleshoot when it doesn’t work correctly. Cloud PKI includes cloud hosted SCEP services that are highly available and redundant within the Microsoft Azure infrastructure.

Automatic Revocation

Cloud PKI automates the deployment of certificates to Intune-managed users and devices and automatically revokes certificates when they fall out of scope. Administrators can also manually revoke certificates using the Intune management console.

Reporting

Administrators can easily view the status of Cloud PKI-issued certificates in Intune. The UI shows the active, expired, and revoked certificates for the issuing CA.

Clicking View all certificates shows a detailed list of all certificates.

BYOCA

Another compelling feature of Cloud PKI is Bring Your Own CA (BYOCA). This feature enables administrators to deploy a cloud-hosted CA that is chained to their existing on-premises AD CS root CA. This is helpful for scenarios where AD CS is already in place and used to issue and manage certificates to existing domain-joined clients and servers. BYOCA effectively allows you to extend your existing CA infrastructure to the cloud and use Cloud PKI to issue and manage certificates for your Intune-managed endpoints while maintaining the full functionality and feature set of on-premises AD CS for non-Intune-managed devices.

Limitations

Although there are many advantages to Cloud PKI, there are some limiting factors to consider.

RSA Only

Today, Cloud PKI is limited to RSA keys only. Administrators can create CAs using RSA 2048, 3072, or 4096-bit keys. Elliptic Curve (EC) keys are not currently supported in Cloud PKI.

Intune Devices Only

Cloud PKI is limited to issuing certificates to Intune-managed devices only. Endpoints must be Entra-joined, or hybrid Entra-joined to enroll for certificates using Cloud PKI.

Inflexible Configuration

The Cloud PKI root and issuing CAs cannot be reconfigured after deployment. Since Cloud PKI root and issuing CAs don’t support the Any Purpose EKU (2.5.29.37.0), all EKUs must be defined when the CA is created. If, in the future, an administrator requires an EKU that was not present when the CA was deployed, an entirely new hierarchy (root and issuing CA) must be deployed.

No Strong Mapping

As of this writing, Cloud PKI does not yet support strong certificate mapping for KB5014754. Microsoft fixed this limitation with Entra Conditional Access certificates and is working to include support for SCEP and PKCS. Hopefully, this shortcoming will be addressed soon in Cloud PKI.

Cost

There’s been much discussion about the cost associated with Cloud PKI. Cloud PKI can be licensed as part of the Intune Suite, which is $10.00 per user per month. Cloud PKI licenses will also be available as a standalone add-on for $2.00 per user per month. For large organizations, this might be cost-prohibitive.

Summary

Overall, Microsoft Intune Cloud PKI is a welcome addition to the Microsoft suite of cloud services. Certificates are excellent phishing-resistant credentials that can be used to improve security for organizations of all sizes. However, managing a CA can be tedious and time-consuming. Leveraging the cloud for PKI and certificate management will be helpful in many scenarios. However, Cloud PKI has some potential drawbacks, and many may not fit everyone.

More Information

Want to learn more about Microsoft Intune Cloud PKI and how it can benefit your organization? Take the first step towards streamlined certificate management and enhanced security for your organization. Fill out the form below, and I’ll provide more information about using Intune Cloud PKI to safeguard your digital assets confidently.

Microsoft Intune Cloud PKI and Active Directory

Recently, Microsoft introduced a new PKI-as-a-Service offering called Cloud PKI. This cloud-based PKI can issue and manage certificates to Intune-managed endpoints. Administrators can now deploy user and device authentication certificates using Intune Cloud PKI without deploying Active Directory Certificate Services (AD CS) on-premises. Numerous blog posts and YouTube videos show how to configure and deploy Intune Cloud PKI, so I won’t reinvent the wheel with a complete configuration guide here. This article will focus instead on integrating Microsoft Intune Cloud PKI with on-premises Active Directory (AD).

Note: I will deliver an Intune and Certificates Masterclass on the ViaMonstra online academy on May 14-16, 2024. This comprehensive training event will cover all aspects of Intune certificate management and will include a full review of Intune Cloud PKI. You can learn more and register here.

AD Integration

While Intune Cloud PKI eliminates the need for on-premises AD CS infrastructure, there will be times when Cloud PKI-issued certificates will be used to authenticate to on-premises AD, either through a RADIUS server such as Windows Network Policy Server (NPS), which is common for VPN and Wi-Fi deployments, or other methods. Additional configuration is required to support this scenario.

Publish Root/Issuing CA Certificates

The Intune Cloud PKI root and issuing CA certificates must be published in AD to support on-premises AD authentication using Intune Cloud PKI-issued certificates. Follow the steps below to complete this task.

Note: Arguably, you could skip publishing the Intune Cloud PKI root and issuing CA certificates in on-premises AD because Cloud-PKI certificates can only be issued to Intune-managed endpoints, in which case you are likely already deploying the Cloud PKI root and issuing CA certificates using Intune. I’m including these steps for completeness. However, publishing the Intune Cloud PKI issuing CA certificate in the NtAuthCA certificate store in AD is required to support on-premises AD authentication using Intune Cloud PKI-issued certificates, so that step is mandatory.

RootCA Store

On a domain-joined computer on-premises, open an elevated PowerShell or command window and run the following command to publish the Intune Cloud PKI root CA certificate to the RootCA certificate store in AD.

certutil.exe -dspublish -f <path to Cloud PKI root CA certificate> RootCA

SubCA Store

Next, run the following command to publish the Cloud PKI issuing CA certificate to the SubCA certificate store in AD.

certutil.exe -dspublish -f <path to Cloud PKI issuing CA certificate> SubCA

NtAuthCA Store

Finally, run the following command to publish the Intune Cloud PKI issuing CA certificate to the NtAuthCA certificate store in AD. Publishing the Intune Cloud PKI issuing CA certificate in the NtAuthCA store in AD allows certificates issued by Intune Cloud PKI to be used to authenticate on-premises AD if required. Be sure to run this command even if you did not run the previous commands to publish the Intune Cloud PKI root and issuing CA certificates in AD.

certutil.exe -dspublish -f <path to Cloud PKI issuing CA certificate> NtAuthCa

GUI

If you have an existing on-premises AD CS deployment, you can use the Enterprise PKI management console to publish the Intune Cloud PKI certificates in AD as an alternative to the command line. First, open the Enterprise PKI tool (pkiview.msc) on an existing on-premises Certification Authority (CA) server. Right-click the Enterprise PKI root node and choose Manage AD Containers. Add the Intune Cloud PKI root CA certificate to the Certification Authorities container. Next, add the Intune Cloud PKI issuing CA certificate to the Enrollment Services container. Finally, add the Intune Cloud PKI issuing CA certificate to the NTAuthCertificatesContainer.

Summary

Administrators can use the Microsoft Intune Cloud PKI solution to issue and manage user and device authentication certificates for their Intune-managed endpoints. Using the commands above, administrators can also integrate their Intune Cloud PKI with on-premises Active Directory to support user and device authentication for common workloads such as Wi-Fi and VPN. Critically, when integrating Cloud PKI with on-premises Active Directory, your Intune administrators should be considered Tier-0 administrators, and appropriate security controls should be enforced.

Additional Information

Microsoft Intune Cloud PKI

Mastering Certificates with Microsoft Intune Training Course – May 14-16, 2024

Always On VPN IPsec Root Certificate Configuration Issue

Always On VPN Device Tunnel Status IndicatorWhen configuring a Windows Routing and Remote Access Service (RRAS) server to support Internet Key Exchange version 2 (IKEv2) VPN connections, it is essential for the administrator to define the root certification authority for which to accept IPsec security associations (SAs). Without defining this setting, the VPN server will accept a device certificate issued by any root certification authority defined in the Trusted Root Certification Authorities store. Details about configuring IKEv2 security and defining the root certification authority can be found here.

Multiple Root Certificates

Administrators may find that when they try to define a specific root certification authority, the setting may not be implemented as expected. This commonly occurs when there is more than one root certificate in the Trusted Root Certification Authorities store for the same PKI.

Always On VPN IPsec Root Certificate Configuration Issue

Certificate Selection

When running the PowerShell command Set-VpnAuthProtocol to define the root certification authority, PowerShell may ignore the administrator-defined certificate and choose a different one, as shown here. This will result in failed IPsec VPN connections from Windows 10 Always On VPN clients using IKEv2.

Always On VPN IPsec Root Certificate Configuration Issue

Certificate Publishing

This issue can occur when root certification authority certificates are published using Active Directory group policy. It appears that Windows prefers Active Directory group policy published certificates over those published directly in the Certification Authorities Container in Active Directory. To resolve this issue, remove any group policy objects that are publishing root certification authority certificates and ensure those root certificates are published in the Certification Authorities container in Active Directory.

PowerShell Script

A PowerShell script to configure this setting that can be found in my Always On VPN GitHub repository here. I have updated this script to validate the defined root certification authority certificate and warn the user if it does not match.

Additional Information

Set-Ikev2VpnRootCertificate.ps1 PowerShell script on GitHub

Windows 10 Always On VPN IKEv2 Security Configuration

Windows 10 Always On VPN IKEv2 Load Balancing and NAT

Windows 10 Always On VPN IKEv2 Features and Limitations

Windows 10 Always On VPN IKEv2 Fragmentation

Windows 10 Always On VPN IKEv2 Certificate Requirements