Always On VPN RRAS Internal Interface Non-Operational

Windows 10 Always On VPN Routing Configuration

Always On VPN administrators troubleshooting connectivity issues may find the Internal network interface in the Routing and Remote Access management console (rrasmgmt.msc) administrative status indicates ‘Unknown’. They will also notice the Operational Status shows Non-operational.

Internal Interface

For clarification, the ‘Internal’ network interface in the Routing and Remote Access management console, as shown above, is not a physical network adapter on the server. Instead, it is a virtual network interface used only for incoming VPN connections.

Non-Operational

The Internal virtual network interface will not be created until the VPN server accepts its first VPN connection. Because of this, the Internal interface will have an operational status of non-operational until the first client attempts to connect. When this occurs, RRAS creates the interface, then assigns it the first IP address from the static IPv4 address pool. Alternatively, if DHCP is configured, it will assign the first IP address returned by the DHCP server.

Interface Names

While discussing network interfaces, I typically recommend renaming them in Windows to identify their function, especially when using two NIC configurations. However, be careful not to name the server’s internal network adapter ‘Internal’, as this can be confusing in the future. In my example above, I use the name ‘LAN’ to identify the internal adapter to distinguish it from the server’s ‘Internal’ virtual interface.

Additional Information

Windows Server RRAS Service Does Not Start

Windows Server RRAS Monitoring and Reporting

Microsoft Always On VPN and RRAS in Azure

Microsoft Always On VPN and RRAS with Signle NIC

Always On VPN Client Routes Missing

Choosing an Enterprise VPN

When configuring Always On VPN for Windows 10 and Windows 11 clients, administrators may encounter a scenario where an IPv4 route defined in Microsoft Endpoint Manager/Intune or custom XML is not reachable over an established Always On VPN connection. Further investigation indicates the route is added to the configuration on the endpoint but does not appear in the routing table when the connection is active.

Routing Configuration

When split tunneling is enabled, administrators must define routes to IP networks that are reachable over the Always On VPN connection. The method of defining these routes depends on the client configuration deployment method.

Endpoint Manager

Using Microsoft Endpoint Manager, administrators define IP routes in the Split Tunneling section of the configuration settings for the Always On VPN device configuration profile. Routes are defined by entering the destination prefix and prefix size. In this example, the 10.0.0.0/8 and 172.21.12.0/21 IPv4 networks are defined for routing over the Always On VPN tunnel.

Custom XML

Using custom XML deployed using Microsoft Endpoint Manager, System Center Configuration Manager (SCCM), or PowerShell, routes are defined in the XML file using the following syntax.

Client Configuration

Validate the routing configuration has been implemented on the endpoint successfully by running the following PowerShell command.

Get-VpnConnection -Name <Connection Name> | Select-Object -ExpandProperty Routes

As you can see here, the IPv4 routes 10.0.0.0/8 and 172.21.12.0/21 are included in the client’s Always On VPN configuration, as shown below.

Missing Route

However, after establishing an Always On VPN connection, the 172.21.12.0/21 network is not reachable. To continue troubleshooting, run the following PowerShell command to view the active routing table.

Get-NetRoute -AddressFamily IPv4

As you can see above, the only IPv4 route in the VPN configuration added to the routing table is the 10.0.0.0/8 network. The 172.21.12.0/21 IPv4 route is missing.

Network Prefix Definition

IPv4 routes missing from the Always On VPN client’s routing table result from incorrect network prefix definition. Specifically, the IPv4 route 172.21.12.0/21 used in the example here is not a valid network address. Rather, it is a host address in the 172.21.8.0/21 network, as shown below.

The Get-Subnet PowerShell cmdlet is part of the Subnet PowerShell module. To install this module, run the following PowerShell command.

Install-Module Subnet

Resolution

Using the example above, enabling access to the 172.21.12.0/21 subnet would require defining the IPv4 prefix in the routing configuration as 172.21.8.0/21. The moral of this story is always validate routing prefixes to ensure they are, in fact, network addresses and not host addresses.

Additional Information

Always On VPN Routing Configuration

Always On VPN Default Class-based Route and Microsoft Endpoint Manager/Intune

Always On VPN Class-Based Default Route and Intune

`Always On VPN Class-Based Default Route and IntuneIn a recent post, I described how to configure routing for Windows 10 Always On VPN clients. In that article, I shared guidance for disabling the class-based default route in favor of defining specific routes for the VPN client. While this is easy enough to do when you use custom XML (deployed via PowerShell, SCCM, or Intune), there is a known limitation when using the native Intune UI that could present some challenges.

Intune VPN Profile Configuration

Defining specific routes is easy to do in Intune using the native VPN configuration profile. In the Configuration settings expand Split Tunneling and click Enable. The administrator can then add routes by entering their Destination prefix and Prefix size, as shown here.

Always On VPN Class-Based Default Route and Intune

Class-Based Default Route

The limitation with using Intune to configure routes is that there is currently no option to disable the class-based default route as there is with custom XML. This means the routes shown in the example above will be added to the client, but the class-based route will also be added automatically, as shown here (class-based default route highlighted with the arrow).

Always On VPN Class-Based Default Route and Intune

Considerations

In most cases, the inclusion of the class-based default route along with the administrator-defined routes will not be a problem. However, in some scenarios, it could yield unexpected results. Specifically, Always On VPN clients may have unintended access to some networks over the VPN tunnel. This is most significant for the Always On VPN device tunnel, where it is common to limit access to only specific resources using individual host routes.

Workaround

Today there is no option to disable the class-based default route using the native Intune UI. Your only option is to deploy the Always On VPN profile using custom XML, as described here.

Additional Information

Deploying Windows 10 Always On VPN with Intune and Custom XML

Deploying Windows 10 Always On VPN Device Tunnel with Intune and Custom XML

Windows 10 Always On VPN Routing Configuration

Windows 10 Always On VPN Device Tunnel Operation and Best Practices