Always On VPN October 2023 Security Updates

Once again, it’s time to patch! After several quiet months, there are a few crucial updates Always On VPN administrators will want to get deployed soon. Thankfully, the impact of the security updates related to Always On VPN is low this time, as there is only one Remote Code Execution (RCE) vulnerability, and it’s for a legacy protocol that should be in limited use today.


CVE-2023-36726 addresses a security vulnerability in Windows Internet Key Exchange (IKE) that can lead to privilege escalation. An attacker who successfully exploits this vulnerability can elevate privileges to that of the local SYSTEM.


This month’s update discloses several Layer Two Tunneling Protocol (L2TP) vulnerabilities. The following CVEs all address a vulnerability where an attacker can send a specially crafted protocol message to a Windows Routing and Remote Access Service (RRAS) server, which could lead to remote code execution on the server.


The impact of the L2TP security vulnerabilities should be minimal in most organizations. L2TP is a legacy VPN protocol not commonly used for Always On VPN. However, misconfiguration can leave vulnerable RRAS servers exposed. Administrators must ensure that inbound UDP port 1723 is not open from the Internet. In addition, L2TP should be disabled on the RRAS server if not in use. See the article on the May 2023 security updates for details.

Additional Information

October 2023 Security Updates

Always On VPN IKEv2 Connection Failure Error Code 800

Always On VPN administrators may encounter a scenario in which Windows 10 clients are unable to establish an IKEv2 VPN connection to a Windows Server Routing and Remote Access Service (RRAS) server or a third-party VPN device under the following conditions.

  1. The VPN connection is configured using ProfileXML.
  2. ProfileXML includes the <CryptographySuite> element.
  3. The VPN server is configured to use a custom IPsec policy.
  4. The VPN server supports only IKEv2.
  5. The <NativeProtocolType> in ProfileXML is set to Automatic.

When these specific conditions are met, the client will be unable to connect to the VPN server using IKEv2. The error message states:

The remote connection was not made because the attempted VPN tunnels failed. The VPN server might be unreachable. If this connection is attempting to use an L2TP/IPsec tunnel, the security parameters required for IPsec negotiation might not be configured properly.

Always On VPN IKEv2 VPN Connection Failure Error Code 800

In addition, the event log will include an error message from the RasClient source with event ID 20227 that includes the following error message.

The user [username] dialed a connection named [connection name] which has failed. The error code returned on failure is 800.

Always On VPN IKEv2 VPN Connection Failure Error Code 800

A manually configured VPN connection using IKEv2 will connect successfully under these same conditions, however.

IKEv2 Error Code 800

Error code 800 translates to ERROR_AUTOMATIC_VPN_FAILED, which is somewhat ambiguous. The error description is:

Unable to establish the VPN connection. The VPN server may be unreachable, or security parameters may not be configured properly for this connection.

Digging Deeper

A network trace of the IKEv2 VPN connection reveals the true source of the problem, which is a failure of the client and server to successfully negotiate an IKEv2 security association (SA). During the SA initiation process, the parameters offered by the client are unacceptable to the server, resulting in a NO_PROPOSAL_CHOSEN notification being returned by the server.

Always On VPN IKEv2 VPN Connection Failure Error Code 800

Custom Cryptography Settings Ignored

It appears that the Always On VPN connection ignores the custom cryptography settings defined in the CryptographySuite element in ProfileXML. However, this only occurs when the NativeProtocolType is set to Automatic. Presumably, this is a bug. 🙂


As a workaround, set the NativeProtocolType to IKEv2. When NativeProtocolType is set to IKEv2, the VPN connection recognizes the IKEv2 parameters defined in the CryptographySuite element and the VPN connection will be established successfully.

Additional Information

Always On VPN IKEv2 Security Configuration

Always On VPN Certificate Requirements for IKEv2

Always On VPN IKEv2 Load Balancing with the KEMP LoadMaster Load Balancer

Always On VPN Protocol Recommendations for Windows Server Routing and Remote Access Service (RRAS)

Always On VPN Protocol Recommendations for Windows Server Routing and Remote Access Service (RRAS)Windows 10 Always On VPN is infrastructure independent and can be implemented using third-party VPN devices. It is not necessary to deploy any Windows servers at all to support an Always On VPN solution. However, in a recent blog post I outlined some compelling reasons to consider using Windows Server’s Routing and Remote Access Service (RRAS) feature to terminate VPN connections. RRAS supports both modern and legacy VPN protocols, each with their own advantages and disadvantages. The choice of which protocols to support will be determined by many factors, but it is important to understand the capabilities of each to make an informed decision.

RRAS VPN Protocols

Windows RRAS supports the following VPN protocols.

  • Internet Key Exchange version 2 (IKEv2) – RFC7296
  • Secure Sockets Tunneling Protocol (SSTP) – Microsoft
  • Layer Two Tunneling Protocol over IPsec (L2TP/IPsec) – RFC2661
  • Point-to-Point Tunneling Protocol (PPTP) – RFC2637

There are pros and cons associated with each of these VPN protocols. Here’s a breakdown of each.


This IPsec-based VPN protocol is the preferred choice for deployments where the highest level of security is required. The latest version of IKE (v2) features streamlined messaging during connection establishment and enhanced session management that reduce protocol overhead and improve performance.

Advantages: Best security options.
Disadvantages: Firewalls may block required UDP ports.


SSTP is an excellent alternative to IKEv2 and is recommended for most deployments. It uses industry standard Transport Layer Security (TLS), making it widely accessible from most locations. It provides good security out of the box but can be improved upon with additional configuration. SSTP lends itself well to load balancing, making it much easier to scale out than IKEv2. Optionally, TLS can be offloaded to an Application Delivery Controller (ADC) to reduce resource utilization on the RRAS server and further improve performance.

Advantages: Easy to configure with firewall friendly access.
Disadvantages: Fewer security options than IKEv2.


While technically supported for Always On VPN, L2TP is a legacy VPN protocol that offers no real advantages over IKEv2. Its use is unnecessary and should be avoided.

Advantages: None.
Disadvantages: Firewalls may block required UDP ports.


PPTP is considered an obsolete VPN protocol with many known security vulnerabilities. Its use should be avoided at all costs.

Advantages: None.
Disadvantages: Insecure.


The recommendation is to use SSTP for user-based VPN connections to ensure operational reliability and optimum performance. Use IKEv2 only when the highest level of security is required. Avoid the use of L2TP/IPsec and PPTP at all costs.

Additional Resources

Frequently Asked Questions about Microsoft’s PPTP Implementation

Always On VPN and Windows Server Routing and Remote Access Services (RRAS)

Windows 10 Always On VPN and the Future of DirectAccess 

5 Things DirectAccess Administrators Should Know about Always On VPN 

3 Important Advantages of Windows 10 Always On VPN over DirectAccess 

Windows 10 Always On VPN Hands-On Training Classes