Always On VPN LockDown Mode

Always On VPN LockDown ModeWhen an Always On VPN connection is provisioned to a Windows 10 client, there’s nothing to prevent a user from disconnecting or even deleting the connection. Some administrators have expressed concern about this, fearful that users may disable the VPN to improve performance or circumvent access controls when force tunneling is enabled. Also, administrators may wish to prevent users from accidentally or purposefully making changes to the configuration, or even deleting the connection entirely.

LockDown Mode

To address these concerns, Microsoft included a feature called LockDown mode for Always On VPN. Once enabled, the following conditions apply.

  • The LockDown VPN connection is always on.
  • The LockDown VPN connection cannot be disabled.
  • The user can’t make changes to or delete the LockDown connection.
  • No other VPN connections can exist on the client.
  • Force tunneling is enabled by default (split tunneling in LockDown mode is not supported).

Challenges with LockDown Mode

Always On VPN LockDown mode brings with it some unique challenges, however. Consider the following.

Limited Protocol Support

LockDown mode only supports IKEv2 and the native (built-in) VPN client. Third-party plug-in provider clients are not supported. IKEv2 is an excellent VPN protocol in terms of security, but operationally speaking it has some serious drawbacks.

Force Tunneling Only

LockDown mode uses force tunneling exclusively. All network traffic must go over the VPN connection. However, if the VPN connection is not available, the client will be unable to access any network resources at all, local or remote.

Captive Portal Issues

LockDown mode prevents clients from connecting to network resources from a network with a captive portal.

On-premises Connectivity

In LockDown mode all network traffic must flow over the VPN tunnel even if the client is on the internal network. This also means that if the VPN server is not reachable internally (unable to resolve public hostname, protocols/ports blocked by internal firewall, unable to route to VPN server, etc.) the client will not be able to access any internal or external network resources at all.

Deleting a LockDown VPN Connection

Deleting a LockDown VPN connection is also challenging. Administrators will find that trying to delete it using the UI or PowerShell often fails. To delete a LockDown Always On VPN connection, use psexec.exe to open an elevated PowerShell command window running in the system context using the following command.

.\psexec.exe -i -s C:\windows\system32\WindowsPowerShell\v1.0\powershell.exe

In the new elevated PowerShell window run the following commands to delete the LockDown VPN connection.

$Namespace = “root\cimv2\mdm\dmmap”
$ClassName = “MDM_VPNv2_01”

$obj = Get-CimInstance -Namespace $Namespace -ClassName $ClassName
Remove-CimInstance -CimInstance $obj

Optionally, download and run Remove-LockDownVPN.ps1 here.

Summary

While Always On VPN LockDown mode might seem like a good idea initially, its implementation is heavy-handed and practically speaking ends up causing more problems than it solves. For administrators that plan to enable this feature, carefully consider the drawbacks and limitations outlined above and their impact on supportability and the user experience.

Additional Information

Windows Always On VPN Device Tunnel Config using Microsoft Intune

Windows 10 Always On VPN Security Configuration 

Windows 10 Always On VPN Hands-On Training

Always On VPN IKEv2 Security Configuration

Always On VPN IKEv2 Security ConfigurationWhen deploying Windows 10 Always On VPN, many administrators choose the Internet Key Exchange version 2 (IKEv2) protocol to provide the highest level of security and protection for remote connections. However, many do not realize the default security parameters for IKEv2 negotiated between a Windows Server running the Routing and Remote Access Service (RRAS) and a Windows 10 VPN client are far less than ideal from a security perspective. Additional configuration on both the server and the client will be required to ensure adequate security and protection for IKEv2 VPN connections.

Windows 10 and RRAS IKEv2 Defaults

In their default configuration, a Windows 10 client connecting to a Windows Server running RRAS will negotiate an IKEv2 VPN connection using the following IPsec security parameters.

  • Encryption: 3DES
  • Authentication/Integrity: SHA-1
  • Key Size: DH Group 2 (1024 bit)

This information can be obtained by opening an elevated PowerShell command window and running the following command.

Get-NetIPsecMainModeSA | Select-Object -First 1

Always On VPN IKEv2 Security Configuration

This can also be confirmed by viewing a network trace as shown here.

Always On VPN IKEv2 Security Configuration

These IPsec security parameters might have been acceptable in the 90’s, but they certainly are not today. 🙂

Improving IKEv2 Security

To provide a baseline level of protection to meet today’s requirements for security and privacy for IKEv2 VPN connections, the following are the minimum recommended IPsec security parameters.

  • Encryption: AES128
  • Authentication/Integrity: SHA-256
  • Key Size: DH Group 14 (2048 bit)

RRAS Custom IPsec Policy

To implement these recommended security baselines for IKEv2 on a Windows Server running RRAS it will be necessary to define a custom IPsec security policy. To do this, open an elevated PowerShell command window and run the following commands on each RRAS server.

Set-VpnServerConfiguration -CustomPolicy -AuthenticationTransformConstants SHA256128 -CipherTransformConstants AES128 -DHGroup Group14 -EncryptionMethod AES128 -IntegrityCheckMethod SHA256 -PFSgroup PFS2048 -SADataSizeForRenegotiationKilobytes 102400

Restart the Remote Access Management service for the changes to take effect.

Restart-Service RemoteAccess -PassThru

Always On VPN IKEv2 Security Configuration

Windows 10 Client Settings

The IPsec policy must match on both the server and the client for an IKEv2 VPN connection to be successful. Unfortunately, none of the IKEv2 IPsec security association parameters proposed by default on Windows 10 clients use 2048-bit keys (DH Group 14), so it will be necessary to define a custom IPsec security policy on the client to match the settings configured on the server.

To configure a matching IPsec security policy on an individual Windows 10 VPN client, open an elevated PowerShell command window and run the following command.

$connection = “[connection name]”
Set-VpnConnectionIPsecConfiguration -ConnectionName $connection -AuthenticationTransformConstants SHA256128 -CipherTransformConstants AES128 -DHGroup Group14 -EncryptionMethod AES128 -IntegrityCheckMethod SHA256 -PFSgroup PFS2048 -Force

Always On VPN IKEv2 Security Configuration

Restore Defaults

In the process of testing it may be necessary to restore the default IKEv2 configuration on both the client and the server. This can be accomplished by running the following PowerShell commands.

Server – Set-VpnServerConfiguration -RevertToDefault

Client – Set-VpnConnectionIPsecConfiguration -ConnectionName [connection_name] -RevertToDefault -Force

Always On VPN XML Settings

To implement a custom IPsec policy using the minimum recommended security settings for an Always On VPN connection using IKEv2, add the following settings to your ProfileXML.

<VPNProfile>
 <NativeProfile>
  <CryptographySuite>
   <AuthenticationTransformConstants>SHA256128</AuthenticationTransformConstants>
   <CipherTransformConstants>AES128</CipherTransformConstants>
   <EncryptionMethod>AES128</EncryptionMethod>
   <IntegrityCheckMethod>SHA256</IntegrityCheckMethod>
   <DHGroup>Group14</DHGroup>
   <PfsGroup>PFS2048</PfsGroup>
  </CryptographySuite>
 </NativeProfile>
</VPNProfile>

Why Not AES 256?

In the examples above you’ll notice that I’ve chosen to use AES128 and not AES256. This is by design, as AES256 does not provide any practical additional security in most use cases. Details here.

Enhanced Security and Performance

To further improve security and performance for IKEv2, consider implementing Elliptic Curve Cryptography (EC) certificates and using Galois Counter Mode (GCM) cipher suites such as GCMAES128 for authentication and encryption.

Additional Information

Always On VPN Certificate Requirements for IKEv2

Always On VPN IKEv2 Connection Failure Error Code 800

Always On VPN IKEv2 Load Balancing with the KEMP LoadMaster Load Balancer

%d bloggers like this: