Always On VPN IKEv2 Load Balancing and NAT

Always On VPN IKEv2 Load Balancing and NATOver the last few weeks, I’ve worked with numerous organizations and individuals troubleshooting connectivity and performance issues associated with Windows 10 Always On VPN, and specifically connections using the Internet Key Exchange version 2 (IKEv2) VPN protocol. An issue that appears with some regularity is when Windows 10 clients fail to connect with error 809. In this scenario, the server will accept connections without issue for a period of time and then suddenly stop accepting requests. When this happens, existing connections continue to work without issue in most cases. Frequently this occurs with Windows Server Routing and Remote Access Service (RRAS) servers configured in a clustered array behind an External Load Balancer (ELB).

Network Address Translation

It is not uncommon to use Network Address Translation (NAT) when configuring Always On VPN. In fact, for most deployments the public IP address for the VPN server resides not on the VPN server, but on an edge firewall or load balancer connected directly to the Internet. The firewall/load balancer is then configured to translate the destination address to the private IP address assigned to the VPN server in the perimeter/DMZ or the internal network. This is known a Destination NAT (DNAT). Using this configuration, the client’s original source IP address is left intact. This configuration presents no issues for Always On VPN.

Source Address Translation

When troubleshooting these issues, the common denominator seems to be the use of Full NAT, which includes translating the source address in addition to the destination. This results in VPN client requests arriving at the VPN server as appearing not to come from the client’s original IP address, but the IP address of the network device (firewall or load balancer) that is translating the request. Full NAT may be explicitly configured by an administrator, or in the case of many load balancers, configured implicitly because the load balancer is effectively proxying the connection.

Known Issues

IKEv2 VPN connections use IPsec for encryption, and by default, Windows limits the number of IPsec Security Associations (SAs) coming from a single IP address. When a NAT device is performing destination/full NAT, the VPN server sees all inbound IKEv2 VPN requests as coming from the same IP address. When this happens, clients connecting using IKEv2 may fail to connect, most commonly when the server is under moderate to heavy load.

Resolution

The way to resolve this issue is to ensure that any load balancers or NAT devices are not translating the source address but are performing destination NAT only. The following is configuration guidance for F5, Citrix ADC (formerly NetScaler), and Kemp load balancers.

F5

On the F5 BIG-IP load balancer, navigate to the Properties > Configuration page of the IKEv2 UDP 500 virtual server and choose None from the Source Address Translation drop-down list. Repeat this step for the IKEv2 UDP 4500 virtual server.

Always On VPN IKEv2 Load Balancing and NAT

Citrix ADC

On the Citrix ADC load balancer, navigate to System > Settings > Configure Modes and check the option to Use Subnet IP.

Always On VPN IKEv2 Load Balancing and NAT

Next, navigate to Traffic Management > Load Balancing > Service Groups and select the IKEv2 UDP 500 service group. In the Settings section click edit and select Use Client IP. Repeat these steps for the IKEv2 UDP 4500 service group.

Always On VPN IKEv2 Load Balancing and NAT

Kemp

On the Kemp LoadMaster load balancer, navigate to Virtual Services > View/Modify Services and click Modify on the IKEv2 UDP 500 virtual service. Expand Standard Options and select Transparency. Repeat this step for the IKEv2 UDP 4500 virtual service.

Always On VPN IKEv2 Load Balancing and NAT

Caveat

Making the changes above may introduce routing issues in your environment. When configuring these settings, it may be necessary to configure the VPN server’s default gateway to use the load balancer to ensure proper routing. If this is not possible, consider implementing the workaround below.

Workaround

To fully resolve this issue the above changes should be made to ensure the VPN server can see the client’s original source IP address. If that’s not possible for any reason, the following registry key can be configured to increase the number of established SAs from a single IP address. Be advised this is only a partial workaround and may not fully eliminate failed IKEv2 connections. There are other settings in Windows that can prevent multiple connections from a single IP address which are not adjustable at this time.

To implement this registry change, open an elevated PowerShell command window on the RRAS server and run the following commands. Repeat these commands on all RRAS servers in the organization.

New-ItemProperty -Path ‘HKLM:SYSTEM\CurrentControlSet\Services\IKEEXT\Parameters\’ -Name IkeNumEstablishedForInitialQuery -PropertyType DWORD -Value 50000 -Force

Restart-Service IKEEXT -Force -PassThru

Additional Information

IPsec Traffic May Be Blocked When A Computer is Behind a Load Balancer

Windows 10 Always On VPN IKEv2 Load Balancing with Citrix NetScaler ADC

Windows 10 Always On VPN IKEv2 Load Balancing with F5 BIG-IP

Windows 10 Always On VPN IKEv2 Load Balancing with Kemp LoadMaster

Migrating DirectAccess from NLB to External Load Balancer


Introduction

Migrating DirectAccess from NLB to External Load BalancerMultiple DirectAccess servers can be deployed in a load-balanced cluster to eliminate single crucial points of failure and to provide scalability for the remote access solution. Load balancing can be enabled using the integrated Windows Network Load Balancing (NLB) or an external physical or virtual load balancer.

NLB Drawbacks and Limitations

NLB is often deployed because it is simple and inexpensive. However, NLB suffers from some serious drawbacks that limit its effectiveness in all but the smallest deployments. For example, NLB uses network broadcasts to communicate cluster heartbeat information. Each node in the cluster sends out a heartbeat message every second, which generates a lot of additional network traffic on the link and reduces performance as more nodes are added. Scalability is limited with NLB too, as only 8 nodes are supported, although the practical limit is 4 nodes. Further, NLB supports only round-robin connection distribution.

External Load Balancer

A better alternative is to implement a dedicated physical or virtual load balancing appliance. A purpose-built load balancer provides additional security, greater scalability (up to 32 nodes per cluster), improved performance, and fine-grained traffic control.

Migrate from NLB to ELB

It is possible to migrate to an external load balancer (ELB) after NLB has already been configured. To do this, follow the guidance provided in my latest blog post on the KEMP Technologies blog entitled “Migrating DirectAccess from NLB to KEMP LoadMaster Load Balancers”.

Migrating DirectAccess from NLB to External Load Balancer

Additional Resources

DirectAccess Deployment Guide for KEMP LoadMaster Load Balancers

Migrating DirectAccess from NLB to KEMP LoadMaster Load Balancers

Load Balancing DirectAccess with KEMP LoadMaster Load Balancers

DirectAccess Load Balancing Tips and Tricks Webinar with KEMP Technologies

DirectAccess Single NIC Load Balancing with KEMP LoadMaster Load Balancer

Configuring the KEMP LoadMaster Load Balancer for DirectAccess NLS

Enable DirectAccess Load Balancing Video

Implementing DirectAccess with Windows Server 2016 Book

DirectAccess Load Balancing Tips and Tricks Webinar

KEMP Technologies LoadMaster Load BalancerEnabling load balancing for DirectAccess deployments is crucial for eliminating single points of failure and ensuring the highest levels of availability for the remote access solution. In addition, enabling load balancing allows DirectAccess administrators to quickly and efficiently add capacity in the event more processing power is required.

DirectAccess includes support for load balancing using integrated Windows Network Load Balancing (NLB) and external load balancers (physical or virtual). External load balancers are the recommended choice as they provide superior throughput, more granular traffic distribution, and greater visibility. External load balancers also more scalable, with support for much larger DirectAccess server clusters, up to 32 nodes. NLB is formally limited to 8 nodes, but because it operates at layer 2 in the OSI model and relies on broadcast heartbeat messages, it is effectively limited to 4 nodes.

The KEMP Technologies LoadMaster load balancer is an excellent choice for load balancing the DirectAccess workload. To learn more about configuring the LoadMaster with DirectAccess, join me for a free live webinar on Tuesday, August 16 at 10:00AM PDT where I’ll discuss DirectAccess load balancing in detail. I will also be sharing valuable tips, tricks, and best practices for load balancing DirectAccess.

DirectAccess Load Balancing Tips and Tricks Webinar

Don’t miss out. Register today!

Additional Resources

DirectAccess Load Balancing Overview

Load Balancing DirectAccess with the KEMP Loadmaster Load Balancer

Maximize your investment in Windows 10 with DirectAccess and the KEMP LoadMaster Load Balancer

KEMP LoadMaster DirectAccess Deployment Guide

DirectAccess Load Balancing Video

DirectAccess Load Balancing VideoConfiguring load balancing in DirectAccess is essential for eliminating single points of failure and ensuring the highest level of availability for the solution. The process of enabling load balancing for DirectAccess can be confusing though, as it involves the reassignment of IP addresses from the first server to the virtual IP address (VIP) for the cluster.

In this video I demonstrate how to enable DirectAccess load balancing and explain in detail how IP address assignment works for both Network Load Balancing (NLB) and external load balancers (ELB).

%d bloggers like this: