The IKEv2 protocol is a popular choice when designing an Always On VPN solution. When configured correctly it provides the best security compared to other protocols. The protocol is not without some unique challenges, however. IKEv2 is often blocked by firewalls, which can prevent connectivity. Another lesser know issue with IKEv2 is that of fragmentation. This can result in failed connectivity that can be difficult to troubleshoot.
IP Fragmentation
IKEv2 uses UDP for transport, and typically most packets are relatively small. The exception to this is when authentication takes place, especially when using client certificate authentication. The problem is further complicated by long certificate chains and by RSA keys, especially those that are greater than 2048 bit. If the payload exceeds 1500 bytes, the IP packet will have to be broken in to smaller fragments to be sent over the network. If an intermediary device in the path is configured to use a smaller Maximum Transmission Unit (MTU), that device may fragment the IP packets.
IP Fragmentation and Firewalls
Many routers and firewalls are configured to drop IP fragments by default. When this happens, IKEv2 communication may begin initially, but subsequently fail. This typically results in an error code 809 with a message stating the following.
“Can’t connect to [connection name]. The network connection between your computer and the VPN server could not be established because the remote server is not responding. This could be because one of the network devices (e.g. firewalls, NAT, routers, etc.) between your computer and the remote server is not configured to allow VPN connections. Please contact your Administrator or your service provider to determine which device may be causing the problem.”
Troubleshooting
When troubleshooting potential IKEv2 fragmentation-related connection failures, a network trace should be taken of the connection attempt on the client. Observe the packet sizes during the conversation, especially IKE_AUTH packets. Packet sizes exceeding the path MTU will have to be fragmented, as shown here.
Measuring Path MTU
Measuring the path MTU between the client and server can be helpful when troubleshooting fragmentation related issues. The mtupath.exe utility is an excellent and easy to use tool for this task. The tool can be downloaded here.
IKEv2 Fragmentation
To address the challenges with IP fragmentation and potential connectivity issues associated with network devices dropping fragmented packets, the IKEv2 protocol itself can be configured to perform fragmentation at the IKE layer. This eliminates the need for IP layer fragmentation, resulting in better reliability for IKEv2 VPN connections.
Both the server and the client must support IKEv2 fragmentation for this to occur. Many firewall and VPN vendors include support for IKEv2 fragmentation. Consult the vendor’s documentation for configuration guidance. For Windows Server Routing and Remote Access (RRAS) servers, the feature was first introduced in Windows Server 1803 and is supported in Windows Server 2019. Windows 10 clients support IKEv2 fragmentation beginning with Windows 10 1803.
Enabling IKEv2 Fragmentation
Windows 10 clients support IKEv2 fragmentation by default. However, it must be enabled on the server via the registry. The following PowerShell command will enable IKEv2 fragmentation support on Windows Server 1803 and later.
New-ItemProperty -Path “HKLM:\SYSTEM\CurrentControlSet\Services\RemoteAccess\Parameters\Ikev2\” -Name EnableServerFragmentation -PropertyType DWORD -Value 1 -Force
A PowerShell script to implement IKEv2 fragmentation can be found on my GitHub here.
Validation Testing
Once IKEv2 fragmentation is configured on the VPN server, a network capture will reveal the IKE_SA_INIT packet now includes the IKEV2_FRAGMENTATION_SUPPORTED notification message.
Additional Information
Windows 10 Always On VPN IKEv2 Security Configuration
RFC 7383 – IKEv2 Message Fragmentation