Always On VPN Authentication Failed Reason Code 16

Strong authentication is essential for remote access to on-premises resources over the public Internet. Using the Protected Extensible Authentication Protocol (PEAP) in combination with user certificates issued by the organization’s internal certification authority (CA) provides high assurance for remote user authentication. It includes the added benefit of making the Always On VPN connection completely seamless for the user, as their certificate is presented to the authentication server transparently during VPN connection establishment. Using PEAP with user certificates is the recommended authentication method for Always On VPN deployments.

Reason Code 16

When configuring Always On VPN to use PEAP with client authentication certificates, administrators may encounter a scenario in which a user has a valid certificate. Yet, their authentication request is rejected by the Network Policy Server (NPS) server when attempting to connect remotely. Looking at the Security event log on the NPS server, administrators will find a corresponding event ID 6273 in the Network Policy Server task category from the Microsoft Windows security auditing event source. In the Authentication Details section, you’ll find that the reason code for the failed request is Reason Code 16, with the following reason specified.

“Authentication failed due to a user credentials mismatch. Either the user name provided does not map to an existing user account or the password was incorrect”.

Password Incorrect?

The reason code indicates the user may have entered an incorrect password. However, the user does not enter their password when using PEAP with client authentication certificates, so there’s no chance the password was entered incorrectly.

TPM

I have increasingly encountered this scenario with many customers deploying Always On VPN over the last year or so. This error is often caused by a known issue with older TPM models. Specifically, those with a TPM specification sub-version of 1.16 and earlier. You can view these TPM details by opening the Windows Settings app and entering ‘security processor’ in the search field.

Workaround

These older TPM models seem to have an issue with RSA-PSS signature algorithms, as described here. If possible, administrators should upgrade devices with older TPM versions to ensure the highest level of security and assurance for their remote users. However, in cases where that is not feasible, administrators can remove RSA-PSS signature algorithms from the registry, which forces the use of a different signature algorithm and seems to restore functionality.

To do this, open the registry editor (regedit.exe) and navigate to the following registry key.

HKLM\SYSTEM\CurrentControlSet\Control\Cryptography\
Configuration\Local\SSL\00010003\

Double-click the Functions entry and remove the following algorithms from the Value data section.

  • RSAE-PSS/SHA256
  • RSAE-PSS/SHA384
  • RSAE-PSS/SHA512

Once complete, reboot the device and test authentication once again.

Intune Proactive Remediation

Administrators using Intune Proactive Remediation will find detection and remediation scripts to make these changes published on GitHub.

Detect-RsaePss.ps1

Remediate-RsaePss.ps1

Additional Information

Windows TPM 2.0 Client Authentication in TLS 1.2 with RSA PSS

Always On VPN NPS Auditing and Logging

Always On VPN NPS RADIUS Configuration Missing

Always On VPN NPS Load Balancing

Always On VPN SSTP Security Configuration

Always On VPN SSTP Security Configuration

When using Windows Server Routing and Remote Access Service (RRAS) to terminate Always On VPN client connections, administrators can leverage the Secure Socket Tunneling Protocol (SSTP) VPN protocol for client-based VPN connections. SSTP is a Microsoft proprietary VPN protocol that uses Transport Layer Security (TLS) to secure connections between the client and the VPN gateway. SSTP provides some crucial advantages over IKEv2 in terms of operational reliability. It uses the TCP port 443, the standard HTTPS port, which is universally available and ensures Always On VPN connectivity even behind highly restrictive firewalls.

TLS Certificate

When configuring SSTP, the first thing to consider is the certificate installed on the server. A certificate with an RSA key is most common, but for SSTP, provisioning a certificate with an ECDSA key is recommended for optimal security and performance. See the following two articles regarding SSTP certificate requirements and ECDSA Certificate Signing Request (CSR) creation.

Always On VPN SSL Certificate Requirements for SSTP

Always On VPN ECDSA SSL Certificate Request for SSTP

TLS Configuration

Much like IKEv2, the default TLS security settings for SSTP are less than optimal. However, SSTP can provide excellent security with some additional configuration.

TLS Protocols

There are several deprecated TLS protocols enabled by default in Windows Server. These include SSLv3.0, TLS 1.0, and TLS 1.1. They should be disabled to improve security for TLS. To do this, open an elevated PowerShell window on the VPN server and run the following commands.

New-Item -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\SSL 3.0\Server\’ -Force

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\SSL 3.0\Server\’ -Name Enabled -PropertyType DWORD -Value ‘0’

New-Item -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.0\Server\’ -Force

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.0\Server\’ -Name Enabled -PropertyType DWORD -Value ‘0’

New-Item -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.1\Server\’ -Force

New-ItemProperty -Path ‘HKLM:\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Protocols\TLS 1.1\Server\’ -Name Enabled -PropertyType DWORD -Value ‘0’

Cipher Suites

Many weak TLS cipher suites and enabled by default in Windows Server. To further enhance security and performance, they can be optimized using a tool such as IIS Crypto. For example, consider prioritizing cipher suites that use ECDHE and GCM with ECDSA to improve security. Also, remove ciphers that use AES-256 to enhance scalability and performance.

Note: AES-256 does not provide any additional practical security over AES-128. Details here.

PowerShell Script

I have published a PowerShell script on GitHub that performs security hardening and TLS cipher suite optimization to streamline the configuration TLS on Windows Server RRAS servers. You can download the script here.

Validation Testing

After running the script and restarting the server, visit the SSL Labs Server Test site to validate the configuration. You should receive an “A” rating, as shown here.

Note: An “A” rating is not achievable on Windows Server 2012 or Windows Server 2012 R2 when using an RSA TLS certificate. A TLS certificate using ECDSA is required to receive an “A” rating on these platforms.

Additional Information

Always On VPN SSL/TLS Certificate Requirements for SSTP

Always On VPN ECDSA SSL Certificate Request for SSTP

Qualys SSL Labs Server Test Site

Always On VPN Protocol Recommendations for Windows Server RRAS

Microsoft SSTP Specification on MSDN

Always On VPN and IKEv2 Fragmentation

The IKEv2 protocol is a popular choice when designing an Always On VPN solution. When configured correctly it provides the best security compared to other protocols. The protocol is not without some unique challenges, however. IKEv2 is often blocked by firewalls, which can prevent connectivity. Another lesser know issue with IKEv2 is that of fragmentation. This can result in failed connectivity that can be difficult to troubleshoot.

IP Fragmentation

IKEv2 uses UDP for transport, and typically most packets are relatively small. The exception to this is when authentication takes place, especially when using client certificate authentication. The problem is further complicated by long certificate chains and by RSA keys, especially those that are greater than 2048 bit. If the payload exceeds 1500 bytes, the IP packet will have to be broken in to smaller fragments to be sent over the network. If an intermediary device in the path is configured to use a smaller Maximum Transmission Unit (MTU), that device may fragment the IP packets.

IP Fragmentation and Firewalls

Many routers and firewalls are configured to drop IP fragments by default. When this happens, IKEv2 communication may begin initially, but subsequently fail. This typically results in an error code 809 with a message stating the following.

“Can’t connect to [connection name]. The network connection between your computer and the VPN server could not be established because the remote server is not responding. This could be because one of the network devices (e.g. firewalls, NAT, routers, etc.) between your computer and the remote server is not configured to allow VPN connections. Please contact your Administrator or your service provider to determine which device may be causing the problem.”

Always On VPN and IKEv2 Fragmentation

Troubleshooting

When troubleshooting potential IKEv2 fragmentation-related connection failures, a network trace should be taken of the connection attempt on the client. Observe the packet sizes during the conversation, especially IKE_AUTH packets. Packet sizes exceeding the path MTU will have to be fragmented, as shown here.

Always On VPN and IKEv2 Fragmentation

Measuring Path MTU

Measuring the path MTU between the client and server can be helpful when troubleshooting fragmentation related issues. The mtupath.exe utility is an excellent and easy to use tool for this task. The tool can be downloaded here.

Always On VPN and IKEv2 Fragmentation

IKEv2 Fragmentation

To address the challenges with IP fragmentation and potential connectivity issues associated with network devices dropping fragmented packets, the IKEv2 protocol itself can be configured to perform fragmentation at the IKE layer. This eliminates the need for IP layer fragmentation, resulting in better reliability for IKEv2 VPN connections.

Both the server and the client must support IKEv2 fragmentation for this to occur. Many firewall and VPN vendors include support for IKEv2 fragmentation. Consult the vendor’s documentation for configuration guidance. For Windows Server Routing and Remote Access (RRAS) servers, the feature was first introduced in Windows Server 1803 and is supported in Windows Server 2019. Windows 10 clients support IKEv2 fragmentation beginning with Windows 10 1803.

Enabling IKEv2 Fragmentation

Windows 10 clients support IKEv2 fragmentation by default. However, it must be enabled on the server via the registry. The following PowerShell command will enable IKEv2 fragmentation support on Windows Server 1803 and later.

New-ItemProperty -Path “HKLM:\SYSTEM\CurrentControlSet\Services\RemoteAccess\Parameters\Ikev2\” -Name EnableServerFragmentation -PropertyType DWORD -Value 1 -Force

A PowerShell script to implement IKEv2 fragmentation can be found on my GitHub here.

Validation Testing

Once IKEv2 fragmentation is configured on the VPN server, a network capture will reveal the IKE_SA_INIT packet now includes the IKEV2_FRAGMENTATION_SUPPORTED notification message.

Always On VPN and IKEv2 Fragmentation

Additional Information

Windows 10 Always On VPN IKEv2 Security Configuration

RFC 7383 – IKEv2 Message Fragmentation

IEA Software MTU Path Scan Utility

Windows 10 Always On VPN Hands-On Training Classes