DirectAccess and FIPS Compliant Algorithms for Encryption

DirectAccess administrators may be required to enable Federal Information Processing Standards (FIPS) compliant algorithms for encryption, hashing, and signing on DirectAccess servers to meet certain regulatory and compliance requirements.

DirectAccess and FIPS Compliant Algorithms for Encryption

Performance Impact

Be advised that enabling this setting will disable support for null cipher suites for the IP-HTTPS IPv6 transition technology. This will result in the double encryption of all DirectAccess client communication, which will increase resource consumption on DirectAccess servers. This leads to reduced scalability and degraded performance for all DirectAccess clients, including Windows 8.x and Windows 10.

If enabling FIPS compliant cannot be avoided, additional compute capacity (CPU and memory) should be provisioned. For best results, add additional servers to distribute the workload and improve performance for DirectAccess clients.

Always On VPN

If you’re looking for better security and performance, consider migrating to Windows 10 Always On VPN. Always On VPN fully supports FIPS compliant algorithms without the negative performance impact associated with DirectAccess. If you’d like to learn more about security and Always On VPN, fill out the form below and I’ll get in touch with you.

Additional Resources

Always On VPN and the Future of DirectAccess 

5 Things DirectAccess Administrators Should Know About Always On VPN 

3 Important Advantages of Always On VPN over DirectAccess 

3 Important Advantages of Always On VPN over DirectAccess

3 Important Advantages of Always On VPN over DirectAccess Windows 10 Always On VPN hands-on training classes now forming. Details here.

Windows 10 Always On VPN provides seamless and transparent, always on remote network access similar to DirectAccess. The mechanics of how it is delivered and managed are fundamentally different, as I discussed here. Some of these changes will no doubt present challenges to our way of thinking, especially in the terms of client provisioning. However, Always On VPN brings along with it some important and significant advantages too.

No More NLS

A Network Location Server (NLS) is used for inside/outside detection by DirectAccess clients. By design, the NLS is reachable by DirectAccess machines only when they are on the internal network. NLS availability is crucial. If the NLS is offline or unreachable for any reason at all, DirectAccess clients on the internal network will mistakenly believe they are outside the network. In this scenario, the client will attempt to establish a DirectAccess connection even though it is inside. This often fails, leaving the DirectAccess client in a state where it cannot connect to any internal resources by name until the NLS is brought back online.

Always On VPN eliminates the frailty of NLS by using the DNS connection suffix for trusted network detection. When a network connection is established, an Always On VPN connection will not be established if the DNS connection suffix matches what the administrator has defined as the internal trusted network.

Full Support for IPv4

DirectAccess uses IPv6 exclusively for communication between remote DirectAccess clients and the DirectAccess server. IPv6 translation technologies allow for communication to internal IPv4 hosts. While this works for the vast majority of scenarios, there are still many challenges with applications that do not support IPv6.

Always On VPN supports both IPv4 and IPv6, so application incompatibility issues will be a thing of the past! With full support for IPv4, the need for IPv6 transition and translation technologies is eliminated. This reduces protocol overhead and improves network performance.

Infrastructure Independent

3 Important Advantages of Always On VPN over DirectAccess Windows servers are required to implement DirectAccess. Always On VPN can be implemented using Windows servers as well, but it isn’t a hard requirement. Always On VPN is implemented entirely on the Windows 10 client, which means any third-party VPN device can be used on the back end, including Cisco, Checkpoint, Juniper, Palo Alto, Fortinet, SonicWALL, F5, strongSwan, and others! This provides tremendous deployment flexibility, making it possible to mix and match backend infrastructure if required. For example, a Windows RRAS VPN server with Palo Alto and SonicWALL firewalls could all be implemented at the same time (using the Windows built-in VPN client). Importantly, making changes to VPN infrastructure is much less impactful and disruptive to clients in the field. VPN devices can be upgraded, replaced, and moved internally without requiring corresponding policy changes on the client.

Additional Information

Always On VPN and the Future of Microsoft DirectAccess 

5 Things DirectAccess Administrators Should Know about Always On VPN 

Contact Me

Have questions about Windows 10 Always On VPN? Interested in learning more about this new solution? Fill out the form below and I’ll get in touch with you.

Outlook Offline over DirectAccess on Windows 10

Outlook Offline over DirectAccess on Windows 10You may encounter a scenario in which Outlook on Windows 10 reports that it is working offline while connected remotely via DirectAccess. The Network Connectivity Status Indicator (NCSI) shows DirectAccess is in a connected state and all other internal resources are accessible.

Outlook Offline over DirectAccess on Windows 10

This is caused by the default settings of the IP-HTTPS tunnel interface on the DirectAccess server not advertising a default route for connected DirectAccess clients. To resolve this issue, enable default route advertising for IP-HTTPS on each DirectAccess server in the enterprise by running the following PowerShell command.

Get-NetIPInterface | Where-Object {$_.InterfaceAlias -eq “IPHTTPSInterface”} | Set-NetIPInterface -AdvertiseDefaultRoute Enabled -PassThru

Outlook Offline over DirectAccess on Windows 10

In the past I’ve heard reports of this setting being overwritten after group policy refresh. Recent testing on Windows Server 2016 does not show this behavior, however. Please report any results you may have in the comments below. Thanks!