DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

Introduction

Communication between the DirectAccess client and server takes place exclusively over IPv6. When DirectAccess servers and/or clients are on the IPv4 Internet, an IPv6 transition technology must be employed to allow those clients to connect to the DirectAccess server. DirectAccess deployment best practices dictate that only the IP-HTTPS IPv6 transition technology be used. IP-HTTPS uses SSL/TLS for server authentication and optionally encryption. To improve security and performance for IP-HTTPS, an Application Delivery Controller (ADC) like the Citrix NetScaler can be configured to perform SSL offloading and client preauthentication for DirectAccess IP-HTTPS connections.

Please note that the following caveats apply when enabling SSL offload for DirectAccess clients:

  • Enabling SSL offload and IP-HTTPS preauthentication on an ADC for DirectAccess is formally unsupported by Microsoft.
  • SSL offload should not be enabled with DirectAccess is configured to use one-time password (OTP) authentication. Offloading SSL will break OTP functionality.

IP-HTTPS Challenges

The IP-HTTPS IPv6 transition technology is a simple and effective way to allow DirectAccess clients and servers to communicate by encapsulating IPv6 traffic in HTTP and routing it over the public IPv4 Internet. However, there are two critical issues with the default implementation of IP-HTTPS in DirectAccess. One is a security issue, the other affects performance.

Security

The DirectAccess server does not authenticate clients establishing IP-HTTPS connections. This could allow an unauthorized client to obtain an IPv6 address from the DirectAccess server using the IPv6 Neighbor Discovery (ND) process. With a valid IPv6 address, the unauthorized user could perform internal network reconnaissance or launch a variety of Denial of Service (DoS) attacks on the DirectAccess infrastructure and connected clients. More details here.

Performance

Windows 7 DirectAccess clients use encrypted cipher suites when establishing IP-HTTPS connections. However, the payload being transported is already encrypted using IPsec. This double encryption increases resource utilization on the DirectAccess server, reducing performance and limiting scalability. More details here.


Note: Beginning with Windows Server 2012 and Windows 8, Microsoft introduced support for null encryption for IP-HTTPS connections. This eliminates the needless double encryption, greatly improving scalability and performance for DirectAccess clients using IP-HTTPS.


SSL Offload for DirectAccess IP-HTTPS

The Citrix NetScaler can be configured to perform SSL offload to improve performance for Windows 7 DirectAccess clients using IP-HTTPS. Since DirectAccess does not natively support SSL offload, the NetScaler must be configured in a non-traditional way. While the NetScaler will be configured to terminate incoming IP-HTTPS SSL connections, it must also use SSL for the back-end connection to the DirectAccess server. However, the NetScaler will be configured only to use null cipher suites when connecting to the DirectAccess server. Even though Windows 7 clients will still perform double encryption to the NetScaler, this configuration effectively offloads from the server the heavy burden of double encrypting every IP-HTTPS connection for all connected DirectAccess clients. This results in reduced CPU utilization on the DirectAccess server, yielding better scalability and performance.

SSL Offload and Windows 8.x/10 Clients

Offloading SSL for Windows 8.x/10 clients will not improve performance because they already use null cipher suites for IP-HTTPS when connecting to a Windows Server 2012 or later DirectAccess server. However, terminating SSL on the NetScaler is still required to perform IP-HTTPS preauthentication.

Supported NetScaler Platforms for DirectAccess SSL Offloading

The following configuration for Citrix NetScaler can be performed on any release of the VPX virtual ADC platform. However, be advised that there is a known issue with older releases on the MDX and SDX hardware platforms that will prevent this from working. For MDX and SDX deployments, upgrading to release 11.1 build 50.10 or later will be required.

Configure Citrix NetScaler for IP-HTTPS SSL Offload

To enable SSL offloading for DirectAccess IP-HTTPS on the Citrix NetScaler, open the NetScaler management console, expand Traffic Management and Load Balancing, and then perform the following procedures in order.

Add Servers

  1. Click Servers.
  2. Click Add.
  3. In the Name field enter a descriptive name for the first DirectAccess server.
  4. Select IP Address.
  5. In the IP Address field enter the IP address of the first DirectAccess server.
  6. Click Create.
  7. Repeat these steps for any additional servers in the load-balanced cluster.

DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

Add Services

  1. Click Services.
  2. Click Add.
  3. In the Service Name field enter a descriptive name for the service.
  4. Select Existing Server from the Server drop-down list.
  5. Choose the first DirectAccess server in the cluster.
  6. Choose SSL from the Protocol drop-down list.
  7. Click Ok.DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler
  8. Edit SSL Parameters.
    1. In the Protocol section uncheck SSLv3.
    2. Click Ok.
  9. Edit SSL Ciphers.
    1. Click Remove All.
    2. Click Add.
    3. Type NULL in the Search Ciphers box.
    4. Check the box next to the first entry for SSL3-NULL-SHA.
    5.  Click the right arrow to add the cipher to the list.
    6. Click Ok.
    7. Click Done.
    8. Repeat these steps for any additional servers in the load-balanced cluster.DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

A warning message may be displayed indicating that no usable ciphers are configured on the SSL vserver/service. This message can be safely ignored.

DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

Add Virtual Server

  1. Click Virtual Servers.
    1. Click Add.
    2. In the Name field enter a descriptive name for the virtual server.
    3. Choose SSL from the Protocol drop-down list.
    4. In the IP Address field enter the IP address for the virtual server.
    5. Click Ok.DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

      Note: When enabling load balancing in DirectAccess, the IP address assigned to the first DirectAccess server is reallocated for use as the load balancing Virtual IP Address (VIP). Ideally this IP address will be assigned to the load balancing virtual server on the NetScaler. However, this is not a hard requirement. It is possible to configure the VIP on the NetScaler to reside on any subnet that the load balancer has an interface to. More details here.


  2. In the Services and Groups section click No Load Balancing Virtual Server Service Binding.
    1. Click on the Select Service field.
    2. Check all DirectAccess server services and click Select.
    3. Click Bind.
    4. Click Continue.
  3. In the Certificate section click No Server Certificate.
    1. Click on the Select Server Certificate field.
    2. Choose the certificate to be used for DirectAccess IP-HTTPS.
    3. Click Select.
    4. Click Bind.
    5. Click Continue.
  4. Edit SSL Ciphers.
    1. Click Remove All.
    2. Click Add.
    3. Type ECDHE in to the Search Ciphers box.
    4. Check the box next to TLS1-ECDHE-RSA-AES128-SHA.
    5. Click the right arrow to add the cipher to the list.
    6. Type NULL in to the Search Ciphers box.
    7. Check the box next to SSL3-NULL-SHA.
    8. Click the right arrow to add the cipher to the list.
    9. Click Ok.
    10. Click Done.DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

      Note: If Windows 8.x/10 clients are supported exclusively, SSL3-NULL-SHA is the only cipher suite required to be configured on the virtual server. If Windows 7 client support is required, the TLS1-ECDHE-RSA-AES128-SHA cipher suite should also be configured on the virtual server.


  5. Edit SSL Parameters.
    1. Uncheck SSLv3.
    2. Click Ok.

      Note: If Windows 8.x/10 clients are supported exclusively, TLSv1 can also be unchecked on the virtual server. If Windows 7 client support is required, TLSv1 must be enabled.


  6. In the Advanced Settings section click Persistence.
    1. Choose SSLSESSION.
    2. Enter 10 minutes for the Time-out (mins) value.
    3. Click Ok.
    4. Click Done.

Optional IP-HTTPS Preauthentication

To enable IP-HTTPS preauthentication to prevent unauthorized network access, perform the following procedures on the Citrix NetScaler appliance.

  1. Expand Traffic Management, Load Balancing, and then click Virtual Servers.
  2. Select the DirectAccess virtual server and click Edit.
    1. In the Certificate section click No CA Certificate.
    2. Click the Select CA Certificate field.
    3. Choose the certificate for the CA that issues certificates to DirectAccess clients and servers.

      Note: The CA certificate used for DirectAccess can be found by opening the Remote Access Management console, clicking Edit on Step 2, and then clicking Authentication. Alternatively, the CA certificate can be found by running the following PowerShell command.

      (Get-RemoteAccess).IPsecRootCertificate | Format-Table Thumbprint


    4. Click Select.
    5. Choose CRL Optional from the CRL and OCSP Check drop-down list.
    6. Click Bind.
  3. Edit SSL Parameters.
    1. Check the box next to Client Authentication.
    2. Choose Mandatory from the Client Certificate drop-down list.
    3. Click Ok.
    4. Click Done.
      DirectAccess SSL Offload and IP-HTTPS Preauthentication with Citrix NetScaler

Summary

Leveraging the advanced capabilities of the Citrix NetScaler ADC can improve performance when supporting Windows 7 clients and enhance security for all DirectAccess clients using IP-HTTPS. In terms of supportability, all of the changes described in this article are completely transparent and do not alter the native DirectAccess client or server configuration. If a Microsoft support engineer declines support due to this configuration, switching from SSL offload to SSL bridge is all that’s required to restore full supportability.

Additional Resources

NetScaler release 11.1 build 50.10 (requires login) – https://www.citrix.com/downloads/netscaler-adc/firmware/release-111-build-5010

Release notes for build 50.10 of NetScaler 11.1 release – https://www.citrix.com/content/dam/citrix/en_us/documents/downloads/netscaler-adc/NS_11_1_50_10.html

VIDEO: Enable Load Balancing for DirectAccess – https://www.youtube.com/watch?v=3tdqgY9Y-uo

DirectAccess IP-HTTPS preauthentication using F5 BIG-IP – https://directaccess.richardhicks.com/2016/05/23/directaccess-ip-https-preauthentication-using-f5-big-ip/

DirectAccess SSL offload for IP-HTTPS using F5 BIG-IP – https://directaccess.richardhicks.com/2013/07/10/ssl-offload-for-ip-https-directaccess-traffic-from-windows-7-clients-using-f5-big-ip/

Implementing DirectAccess with Windows Server 2016 book – http://directaccessbook.com/

DirectAccess IP-HTTPS Preauthentication using Citrix NetScaler

Note: For information about configuring the F5 BIG-IP to perform IP-HTTPS preauthentication, click hereFor information about configuring Windows Server 2012 R2 or Windows Server 2016 to perform IP-HTTPS preauthentication natively, click here.

Introduction

DirectAccess IP-HTTPS Preauthentication using Citrix NetScalerIP-HTTPS is an IPv6 transition technology used by DirectAccess. It enables DirectAccess clients to communicate with the DirectAccess server using IPv6 over the public IPv4 Internet by encapsulating IPv6 packets in HTTP and authenticating (and optionally encrypting) them using SSL/TLS. IP-HTTPS is supported for all DirectAccess network deployment configurations and is enabled by default.

When a DirectAccess client connection is established, only the server is authenticated by the client. The client is not authenticated by the server. The DirectAccess server will thus accept IP-HTTPS connections from any client, valid or not.

IP-HTTPS Connection

Once a client has established an IP-HTTPS transition tunnel, it will go through the standard IPv6 neighbor discovery process to identify routers and obtain an IPv6 prefix for the link. It will use this information to build its own IPv6 address, which it uses to communicate with the DirectAccess server and begin establishing IPsec security associations for DirectAccess.

ICMP and IPsec

By design, ICMP is exempt from DirectAccess IPsec policy processing. If an unauthorized client were to establish an IP-HTTPS transition tunnel, even without authentication (Kerberos Proxy or certificate) it would be able to ping the DirectAccess server tunnel endpoint IPv6 addresses, the DNS64 IPv6 address, and any intranet hosts (assuming host firewalls allow this access).

Security Risk

This default posture opens up the DirectAccess server and intranet to unauthorized remote network reconnaissance and some IPv6-related Denial-of-Service (DoS) attacks. These were demonstrated by security researcher Ali Hardudi at the recent Troopers16 security conference. You can view his very informative session here.

Note: DirectAccess IPsec data connections are unaffected and are completely secure. Data is never exposed at any time with the default configuration.

IP-HTTPS Preauthentication

DirectAccess IP-HTTPS Preauthentication using Citrix NetScalerTo mitigate these risks, it is recommended that an Application Delivery Controller (ADC) such as the Citrix NetScaler be configured to preauthenticate DirectAccess clients prior to establishing the IP-HTTPS transition tunnel.

Note: To configure the F5 BIG-IP to perform IP-HTTPS preauthentication, click here.

Citrix NetScaler Configuration

To perform DirectAccess preauthentication, it will be necessary to configure the Citrix NetScaler to perform SSL termination for IP-HTTPS. The virtual server on the NetScaler must use the SSL protocol. In addition, a CA certificate must be bound to the virtual server. Also, Client Authentication must be enabled under SSL Parameters and be set to Mandatory.

DirectAccess IP-HTTPS Preauthentication using Citrix NetScaler

Once configured, the NetScaler appliance will ensure that the DirectAccess IPsec certificate is present on the client before establishing the IP-HTTPS IPv6 transition tunnel. This will prevent unauthorized connections to the DirectAccess server.

Important Considerations

Performing IP-HTTPS preauthentication on the Citrix NetScaler is formally unsupported by Microsoft. In addition, terminating IP-HTTPS on the NetScaler appliance breaks OTP authentication.

Summary

The default security posture of DirectAccess leaves the internal network open to unauthorized network reconnaissance, and exposes the DirectAccess infrastructure to potential denial-of-service (DoS) attacks. To mitigate these security risks, implement the Citrix NetScaler ADC and enable client certificate authentication.

References

Security Assessment of Microsoft DirectAccess [Overview] – https://www.insinuator.net/2016/04/security-assessment-of-microsoft-directaccess/

Security Assessment of Microsoft DirectAccess [Full Document] – https://www.ernw.de/newsfeed/newsletter-53-may-2016-security-assessment-of-microsoft-directaccess/index.html

Security Assessment of Microsoft DirectAccess Troopers16 Presentation by Ali Hardudi [Video] – https://www.youtube.com/watch?v=wW1x7ow0V9w

Chiron IPv6 Penetration Testing Framework – https://www.insinuator.net/2014/10/chiron-an-all-in-one-ipv6-penetration-testing-framework/

IP-HTTPS specification on MSDN – https://msdn.microsoft.com/en-us/library/dd358571.aspx

Configure F5 BIG-IP to Perform IP-HTTPS Preauthentication – https://directaccess.richardhicks.com/2016/05/23/directaccess-ip-https-preauthentication-using-f5-big-ip/

Configure Windows Server 2012 R2  and Windows Server 2016 to Perform IP-HTTPS Preauthentication – https://directaccess.richardhicks.com/2016/06/13/directaccess-ip-https-preauthentication/

SSL Offload for IP-HTTPS DirectAccess Traffic from Windows 7 Clients using F5 BIG-IP

From a client perspective, DirectAccess is an IPv6 only solution. It requires IPv6 connectivity from end-to-end to provide seamless, transparent, always-on remote access. DirectAccess clients are most commonly connected to the IPv4 Internet, so to overcome the limitations imposed by the exclusive use of IPv6 for transport, DirectAccess leverages IPv6 transition technologies such as 6to4, Teredo, or IP-HTTPS to tunnel IPv6 DirectAccess client communication over the IPv4 Internet. These transition protocols are favored by the operating system in the order in which I have listed them here. 6to4 uses IP protocol 41 for transport and requires that the client have a public IPv4 address, so if the DirectAccess client is behind a firewall that does not allow outbound IP protocol 41, or is located behind a NAT and has a private IPv4 address, it will fall back to Teredo. Teredo uses UDP for transport on port 3544, and if this communication is blocked by a firewall the DirectAccess client will then fall back to IP-HTTPS. IP-HTTPS, as its name implies, tunnels DirectAccess IPv6 traffic in HTTP, which is authenticated and encrypted using SSL or TLS.

Historically the challenge with the IP-HTTPS IPv6 transition protocol is that it encrypts DirectAccess communication which is already encrypted using IPsec. This double encryption places significant demands on CPU and memory resources on the DirectAccess server, resulting in poor throughput and performance and limiting the overall scalability of the solution. To address these shortcomings, Windows Server 2012 DirectAccess introduced support for IP-HTTPS NULL encryption. SSL/TLS is still used for authentication, but the IPsec traffic is no longer double encrypted. This dramatically reduces resource consumption on the DirectAccess server, resulting in improved performance and allowing many more DirectAccess clients to be handled by a single server. The only drawback is that IP-HTTPS NULL encryption is only supported with Windows 8 clients. When Windows 7 clients connect to a Windows Server 2012 DirectAccess server using IP-HTTPS, they will continue to use encrypted IP-HTTPS.

An ideal solution would be to terminate SSL off box using a dedicated hardware appliance like the F5 BIG-IP Local Traffic Manager (LTM). Unfortunately there is no provision in Windows Server 2012 DirectAccess to enable SSL termination for IP-HTTPS traffic. However, using some of the advanced features of the LTM, we can effectively offload SSL on the F5 by configuring LTM to emulate Windows 8 DirectAccess client behavior. This is accomplished by having the F5 LTM exclusively negotiate the use of a NULL encryption cipher suite with the Windows Server 2012 DirectAccess server on behalf of Windows 7 DirectAccess clients.

Note: This post assumes that you are familiar with the configuration and management of the F5 BIG-IP LTM solution, and that you’ve already imported your SSL certificates and configured nodes, pools, and virtual servers for your Windows Server 2012 DirectAccess server.

To configure the F5 LTM to provide SSL offload for Windows 7 DirectAccess clients, we’ll need to create SSL profiles to allow the use of specific cipher suites for our IP-HTTPS traffic. In its default configuration, the BIG-IP LTM does not support the use of NULL encryption cipher suites. Since Windows 8 DirectAccess clients use NULL cipher suites exclusively, we need to explicitly enable these on the LTM to support our Windows 8 clients. Since our Windows 7 clients will use only encrypted cipher suites, we’ll be sure to include those as well. To do this, open the F5 management console, expand Local Traffic, Profiles, SSL, and then click the green icon next to Client.

f5_directaccess_iphttps_offload_01

Provide a name for the new Client SSL Profile, select Advanced configuration, check the Custom box and specify DEFAULT:NULL for Ciphers. Be sure to select the appropriate SSL certificate and key. Click Finished at the bottom of the screen to save these settings. This change allows NULL cipher suites in addition to encrypted cipher suites, allowing us to support both Windows 8 and Windows 7 DirectAccess clients.

f5_directaccess_iphttps_offload_02

Next we need to configure the LTM to use only NULL cipher suites when communicating with the Windows Server 2012 DirectAccess server. To do this, expand Profiles, SSL, and then click the green icon next to Server.

f5_directaccess_iphttps_offload_03

Provide a name for the new Server SSL Profile, select Advanced configuration, check the Custom box and specify NULL-SHA for Ciphers. Click Finished at the bottom of the screen to save these settings. The end result here will be to force the exclusive use NULL encryption cipher suites for all IP-HTTPS traffic, regardless if it is a Windows 8 or Windows 7 client.

f5_directaccess_iphttps_offload_04

Once you’ve completed the client and server SSL profiles, it will be necessary to assign these profiles to the virtual servers that represent your Windows Server 2012 DirectAccess server. Navigate to Virtual Servers and click on Virtual Server List. Click the virtual server that corresponds to your DirectAccess server, and then scroll down to the bottom of the page. For SSL Profile (Client), select DA_IPHTTPS_CLIENT and add that to the list. Repeat this step for the SSL Profile (Server), this time selecting DA_IPHTTPS_SERVER. Click Update to apply these changes.

f5_directaccess_iphttps_offload_05

Once complete, the F5 BIG-IP LTM will now effectively be offloading SSL traffic on behalf of Windows 7 DirectAccess clients by emulating the Windows 8 DirectAccess client behavior and using only NULL encryption for IP-HTTPS sessions established with the Windows Server 2012 DirectAccess server. Although I can see no issues with this deployment model, be advised that this configuration may not be supported by Microsoft, so make these changes at your own risk. I’ll be working with Microsoft and F5 to get this solution reviewed and tested and I will provide clarification on supportability here once I have that information.

Special thanks to Jeff Bellamy, Ryan Korock, and John Wagnon at F5 for their assistance with this developing solution.

%d bloggers like this: