Always On VPN Traffic Filters and IPv6

Always On VPN Windows Server RRAS Service Does Not Start

Using Traffic Filters with Always On VPN provides administrators the option to configure a true Zero Trust Network Access (ZTNA) solution for their field-based users and devices. By enabling traffic filtering, network access over the Always On VPN connection can be controlled using fine-grained policies. Traffic Filter rules can be configured to restrict access based source and destination IP addresses, protocols, and source and destination ports. Administrators can further restrict access based on the application generating the traffic.

IPv6

While testing these features recently, I learned that the Microsoft Endpoint Manager (formerly Intune) user interface does not appear to support IPv6 when configuring traffic filter rules. As you can see here, the UI explicitly asks for an IPv4 address and complains when entering an IPv6 address in the address field, as shown here.

Interestingly, it is possible to add IPv6 addresses in XML, as follows.

<TrafficFilter>
   <App>
      <Id>Microsoft.RemoteDesktop_8wekyb3d8bbwe</Id>
   </App>
   <Protocol>6</Protocol>
   <RemotePortRanges>3389</RemotePortRanges>
   <RemoteAddressRanges>2001:470:f109::/48</RemoteAddressRanges>
</TrafficFilter>

Connection Failure

Unfortunately, after loading the XML on a test client, the Always On VPN connection fails with the following error message.

“Can’t connect to <ConnectionName>. Catastrophic failure.”

In addition, the Application event log records an event ID 20227 from the RasClient source with the following error.

“The user <UserName> dialed a connection name <ConnectionName> which has failed. The error code returned on failure is -2147418113.”

Workaround

At this time, the only known workaround is to update the configuration on the RRAS server to use IPv4 addressing for VPN clients.

Summary

Unfortunately, IPv6 is still a second-class citizen when it comes to Always On VPN. Although enabling IPv6 works well in most common deployment scenarios, the Microsoft Endpoint Manager management console often fails to accept IPv6 entries in IP address fields. In addition, some advanced features such as traffic filtering are incompatible with IPv6.

Additional Information

Windows 10 Always On VPN and Zero Trust Network Access (ZTNA)

Windows 10 Always On VPN Windows Server RRAS Service Does Not Start

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in IntuneMicrosoft recently announced support for native Windows 10 Always On VPN device tunnel configuration in Intune. Previously administrators had to use the complicated and error-prone custom XML configuration to deploy the Windows 10 Always On VPN device tunnel to their clients. That is no longer required with this recent Intune update. In addition, administrators may now specify custom cryptography settings for IPsec Security Association (SA) parameters for IKEv2 for both device tunnel and user tunnel connections. This effectively eliminates the requirement to use custom ProfileXML for most deployment scenarios.

Device Tunnel Configuration in Intune

Follow the steps below to configure and deploy a Windows 10 Always On VPN device tunnel using the native Intune user interface.

Create Profile

1. Open the Microsoft Endpoint Manager admin center (devicemanagement.microsoft.com).
2. Navigate to Devices > Configuration Policies.
3. Click Create profile.
4. Choose Windows 10 and later from the Platform drop-down list.
5. Choose VPN from the Profile drop-down list.
6. Click Create.

Profile Settings

Proceed with the profile configuration as you would normally, providing the VPN connection name, VPN server name(s), and choosing the option to register IP addresses with internal DNS. Next use the following steps to define a device tunnel connection and specify custom cryptography for IPsec SA parameters for IKEv2.

Configure a Device Tunnel

1. Select IKEv2 from the Connection type drop-down list.
2. Click Enable in the Always On section.
3. Select Machine Certificates from the Authentication method section.
4. If the computer certificate is provisioned using Intune, select the client authentication certificate (not required if the computer certificate is provisioned using on-premises Active Directory).
5. Click Enable in the Device Tunnel section.

Define Custom Cryptography

Follow the steps below to implement minimum security baseline cryptography settings for IKEv2.

IKE Security Association Parameters

1. Select AES-128 from the Encryption algorithm drop-down list.
2. Select SHA2-256 from the Integrity check algorithm drop-down list.
3. Select 14 from the Diffie-Hellman group drop-down list.

Child Security Association Parameters

1. Select CBC-AES-128 from the Cipher transform algorithm drop-down list.
2. Select HMAC-SHA256-128 from the Authentication transform algorithm drop-down list.
3. Select 14 from the Perfect forward secrecy (pfs) group drop-down list.

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Important Note: The IPsec security association parameters outlined above are the minimum recommend security baseline for IKEv2 and are compatible with all supported versions of Windows Server RRAS. It is recommended that authenticated cipher suites (GCM) be used whenever possible. However, GCM ciphers are not supported for encryption prior to Window Server 1803. Administrators should review these security settings and adjust the parameters to meet their specific security requirements.

Server Configuration

When defining custom cryptography settings for IKEv2 for device tunnel deployment, it is critical that the server be configured using identical parameters. Failure to use matching cryptography settings on the client and server will result in error code 13868, which indicates an IPsec policy mismatch.

A PowerShell script to configure IKEv2 security association parameter minimum security baselines on the RRAS server as outlined above can be found here. The commands to make these changes on the Azure VPN gateway can be found in this post.

Caveats

While Microsoft has made great strides to ensure better support for Always On VPN configuration using the native Intune UI, there are a few critical settings are still not supported. In these scenarios the administrator must deploy Always On VPN using custom XML, as described here and here.

Custom Cryptography

IKEv2 custom cryptography settings are only exposed when IKEv2 is selected as the connection type. It appears that defining custom cryptography settings for IKEv2 when the connection type is set to Automatic is not supported at this time. If you wish to specify the Automatic connection type and use custom cryptography settings for IKEv2 you will need to deploy the device tunnel using custom ProfileXML.

IPv6

IPv6 routing when configuring split tunneling for Always On VPN in Intune is not supported.

Always On VPN Device Tunnel and Custom Cryptography Native Support Now in Intune

Additional Information

Windows 10 Always On VPN Policy Mismatch Error

Windows 10 Always On VPN Device Tunnel with Azure VPN Gateway

Windows 10 Always On VPN IKEv2 Load Balancing and NAT

Windows 10 Always On VPN IKEv2 Fragmentation

Windows 10 Always On VPN IKEv2 Security Configuration

NetMotion Mobility with Microsoft Endpoint Manager and Intune

NetMotion Mobility with Microsoft Endpoint Manager and IntuneNetMotion Software and Microsoft have now partnered to integrate NetMotion Mobility with Microsoft Endpoint Manager and Intune. NetMotion Mobility is a purpose-built enterprise VPN solution that has many advantages over competing remote access technologies. Using Microsoft Endpoint Manager or Intune, organizations can now quickly and easily provision NetMotion client software to their managed devices.

NetMotion Mobility

NetMotion Mobility is a popular remote access solution designed to meet the needs of enterprise organization with diverse mobility requirements. NetMotion Mobility uses a proprietary transport protocol that, unlike any other solution, is designed for mobility from inception. It includes many advanced features not found anywhere else. You can learn more about NetMotion Mobility here.

Comparing DirectAccess and NetMotion Mobility

Endpoint Manager and Intune

More information about the NetMotion Software and Microsoft Endpoint Manager and Intune partnership here.

Additional Information

5 Things NetMotion Mobility Can Do that Microsoft DirectAccess Can’t
5 Things NetMotion Mobility Can Do that Microsoft Windows 10 Always On VPN Can’t
Comparing NetMotion Mobility and Microsoft DirectAccess

Evaluate NetMotion Mobility

Interested in learning more about NetMotion Mobility? Complete the form below and I’ll provide you with more information.

%d bloggers like this: