Always On VPN Client Routes Missing

Choosing an Enterprise VPN

When configuring Always On VPN for Windows 10 and Windows 11 clients, administrators may encounter a scenario where an IPv4 route defined in Microsoft Endpoint Manager/Intune or custom XML is not reachable over an established Always On VPN connection. Further investigation indicates the route is added to the configuration on the endpoint but does not appear in the routing table when the connection is active.

Routing Configuration

When split tunneling is enabled, administrators must define routes to IP networks that are reachable over the Always On VPN connection. The method of defining these routes depends on the client configuration deployment method.

Endpoint Manager

Using Microsoft Endpoint Manager, administrators define IP routes in the Split Tunneling section of the configuration settings for the Always On VPN device configuration profile. Routes are defined by entering the destination prefix and prefix size. In this example, the 10.0.0.0/8 and 172.21.12.0/21 IPv4 networks are defined for routing over the Always On VPN tunnel.

Custom XML

Using custom XML deployed using Microsoft Endpoint Manager, System Center Configuration Manager (SCCM), or PowerShell, routes are defined in the XML file using the following syntax.

Client Configuration

Validate the routing configuration has been implemented on the endpoint successfully by running the following PowerShell command.

Get-VpnConnection -Name <Connection Name> | Select-Object -ExpandProperty Routes

As you can see here, the IPv4 routes 10.0.0.0/8 and 172.21.12.0/21 are included in the client’s Always On VPN configuration, as shown below.

Missing Route

However, after establishing an Always On VPN connection, the 172.21.12.0/21 network is not reachable. To continue troubleshooting, run the following PowerShell command to view the active routing table.

Get-NetRoute -AddressFamily IPv4

As you can see above, the only IPv4 route in the VPN configuration added to the routing table is the 10.0.0.0/8 network. The 172.21.12.0/21 IPv4 route is missing.

Network Prefix Definition

IPv4 routes missing from the Always On VPN client’s routing table result from incorrect network prefix definition. Specifically, the IPv4 route 172.21.12.0/21 used in the example here is not a valid network address. Rather, it is a host address in the 172.21.8.0/21 network, as shown below.

The Get-Subnet PowerShell cmdlet is part of the Subnet PowerShell module. To install this module, run the following PowerShell command.

Install-Module Subnet

Resolution

Using the example above, enabling access to the 172.21.12.0/21 subnet would require defining the IPv4 prefix in the routing configuration as 172.21.8.0/21. The moral of this story is always validate routing prefixes to ensure they are, in fact, network addresses and not host addresses.

Additional Information

Always On VPN Routing Configuration

Always On VPN Default Class-based Route and Microsoft Endpoint Manager/Intune

Always On VPN and RRAS in Azure

Always On VPN and RRAS in AzureWhen deploying Windows 10 Always On VPN, it may be desirable to host the VPN server in Microsoft’s Azure public cloud. Recently I wrote about Always On VPN deployment options in Azure, and in that post I indicated that deploying Windows Server and the Routing and Remote Access Service (RRAS) was one of those options. Although not formally supported by Microsoft, RRAS is often deployed in Azure because it is cost-effective, easy to manage, and provides flexible scalability.

Supportability

It’s important to state once again that although it is possible to successfully deploy Windows Server with RRAS in Azure to support Always On VPN, as of this writing it is not a formally supported workload. If the administrator makes the decision to deploy RRAS in Azure, they must also accept that Microsoft may refuse to assist with troubleshooting in this specific deployment scenario.

Always On VPN and RRAS in Azure

Reference: https://support.microsoft.com/en-us/help/2721672/microsoft-server-software-support-for-microsoft-azure-virtual-machines

Azure Prerequisites

The configuration of RRAS is identical to on-premises, with a few additional steps required by Azure infrastructure.

Windows Server

RRAS can be configured on any Windows Server virtual machine supported in Microsoft Azure. As with on-premises deployments, Server GUI and Core are supported. Domain-join is optional. The server can be deployed with one network interface or two.

Public IP

A public IP address must be assigned to the VPN server’s external network interface, or the internal interface if the VPN server is configured with a single network adapter. The IP address can be static or dynamic. When using a dynamic IP address, configure a CNAME record in DNS that points to the name configured for the IP address in Azure. If using a static IP address, an A host record can be configured pointing directly to the IP address.

Network Security Group

A Network Security Group (NSG) must be configured and assigned to the VPN server’s external or public-facing network interface that allows the following protocols and ports inbound.

  • TCP port 443 (SSTP)
  • UDP port 500 (IKEv2)
  • UDP port 4500 (IKEv2 NAT traversal)

RRAS in Azure

Below are the infrastructure requirements for supporting Windows Server RRAS VPN in Azure.

Client IP Subnet

Static IP address pool assignment must be used with RRAS. Using DHCP for VPN client IP address assignment in Azure is not supported and will not work. The IP subnet assigned to VPN clients by RRAS must be unique and not overlap with any existing Azure VNet subnets. If more than one VPN server is deployed, each server should be configured to assign a unique subnet for its clients.

IP Forwarding

IP forwarding must be enabled on the VPN server’s internal network interface. Follow the steps below to enable IP forwarding.

1. In the Azure portal, open the properties page for the internal network interface for the VPN server.
2. Click IP configurations in the navigation pane.
3. Click Enabled next to IP forwarding.
4. Click Save.

Always On VPN and RRAS in Azure

Routing

Azure must be configured to route IP traffic from VPN clients back to the VPN server. Follow the steps below to create and assign a routing table in Azure.

1. Click Create Resource.
2. Enter “Route Table” in the search field and press Enter.
3. Click Route Table.
4. Click Create.
5. Enter a descriptive name for the route table in the Name field.
6. Choose an appropriate subscription from the Subscription drop-down list.
7. Select the resource group where the VPN server(s) reside.
8. Select the best location to deploy the route table resource from the Location drop-down list.
9. If the administrator wants to have the VPN client IP subnet route information published automatically, select Enabled for Virtual network gateway route propagation.
10. Click Create.

Always On VPN and RRAS in Azure

Once complete, follow the steps below to define the route for VPN clients.

1. Open the properties page for the route table.
2. Click Routes in the navigation pane.
3. Click Add.
4. Enter a descriptive name in the Route name filed.
5. Enter the IP subnet assigned to VPN clients in the Address prefix field.
6. Select Virtual appliance from the Next hop type drop-down list.
7. Enter the IPv4 address assigned to the VPN server’s internal network interface in the Next hop address field.
8. Click Ok.
9. Repeat the steps above for each VPN server configured in Azure.

Always On VPN and RRAS in Azure

Finally, follow the steps below to assign the route table to an Azure VNet subnet.

1. Open the properties page for the route table.
2. Click Subnets in the navigation pane.
3. Click Associate.
4. Click Virtual network.
5. Choose the appropriate Azure VNet.
6. Click Subnet.
7. Choose an Azure VNet subnet to assign the route table to.
8. Click Ok.
9. Repeat the steps above to assign the route table to any Azure VNet subnet that must be accessible by VPN clients. If VPN clients need access to on-premises resources via Azure site-to-site gateway, assign the route table to the Azure VPN gateway subnet.

Always On VPN and RRAS in Azure

Note: Azure only supports the assignment of one route table per subnet. If a route table is currently assigned, the VPN client subnet route can be added to an existing route table, if necessary.

Summary

Administrators have many choices when it comes to support Always On VPN connections hosted in Azure. RRAS on Windows Server can be an effective solution, assuming you can live without formal support. If having a formally supported solution is a hard requirement, consider deploying Always On VPN using the native Azure VPN gateway or another third-part Network Virtual Appliance (NVA).

Additional Information

Windows 10 Always On VPN with Azure Gateway

Windows 10 Always On VPN Options for Azure Deployments

Windows 10 Always On VPN Multisite with Azure Traffic Manager

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

After installing and configuring DirectAccess in Windows Server 2019 you may encounter an error message indicating that IP-HTTPS is not working properly. Looking at the Operations Status overview in the Dashboard of the Remote Access Management console shows that the IP-HTTPS interface is in error.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

IP-HTTPS Route Error

Viewing the detailed Operations Status shows the following error message.

Error: The IP-HTTPS route does not have published property enabled.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Missing Route

Looking at the routing table on the DirectAccess server reveals that a route to the client IPv6 prefix is indeed missing.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Resolution

To resolve this error message, add the client IPv6 route to the DirectAccess server’s routing table and publish it. This is accomplished by running the following PowerShell commands on the DirectAccess server.

$IPv6prefix = (Get-RemoteAccess).ClientIPv6Prefix
New-NetRoute -AddressFamily IPv6 -DestinationPrefix $IPv6prefix -InterfaceAlias “Microsoft IP-HTTPS Platform Interface” -Publish Yes

Next, restart the Remote Access Management service (RaMgmtSvc) using the following PowerShell command.

Restart-Service RaMgmtSvc -PassThru

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

Once complete, refresh the management console and the IP-HTTPS error message should be resolved and the operations status should state that it is now working properly.

DirectAccess IP-HTTPS Not Working Properly in Windows Server 2019

 

Additional Information

SSL Certificate Conisderations for DirectAccess IP-HTTPS

DirectAccess Expire IP-HTTPS Certificate and Error 0x800b0101