Always On VPN Connection Issues After Sleep or Hibernate

Always On VPN Connection Issues After Sleep or HibernateLikely the single most common complaint about Windows 10 Always On VPN is that device tunnel or user tunnel VPN connections fail to reconnect automatically after a laptop computer wakes from sleep or hibernate. You will find many complaining about this issue and discussing various attempts at resolution on the Microsoft forums. And while Microsoft has released many fixes the last few years to improve connection reliability for Always On VPN, this one seems to continue to plague them. This issue is also prevalent with DirectAccess deployments.

Fix or Workaround?

Unfortunately, I do not have a specific fix or workaround to share that will magically resolve this ongoing issue. However, there are a few group policy settings that may prove effective in some cases.

Connected Standby Settings

To help address issues with Always On VPN connections failing after sleep or hibernate, open the group policy management console and navigate to Computer Configuration > Administrative Templates > System > Power Management > Sleep Settings and enable the following settings.

  • Allow network connectivity during connected-standby (plugged in)
  • Allow network connectivity during connected-standby (on battery)

Always On VPN Connection Issues After Sleep or Hibernate

Always On VPN Connection Issues After Sleep or Hibernate

Additional Information

Are you experiencing issues with Always On VPN reconnecting automatically after sleep or hibernate? Have you found an effective workaround? Share your experience in the comments below!

Always On VPN Bug in Windows 10 2004

Always On VPN Bug in Windows 10 2004While performing Always On VPN evaluation testing with the latest release of Windows 10 (2004), a bug was discovered that may result in failed VPN connections, but only under certain conditions. Specifically, the failure occurs when both the device tunnel and user tunnel are configured on the same client, and the user tunnel is configured to use IKEv2 exclusively.

Error 829

After upgrading to Windows 10 2004, and when the device tunnel and user tunnel are both deployed and the user tunnel is configured to use IKEv2, the administrator will notice that if the device tunnel connection is established, the user tunnel connects successfully but is then terminated abruptly with error code 829.

Always On VPN Bug in Windows 10 2004

Note: This can happen in reverse if the user tunnel is established before the device tunnel for some reason. In this scenario the user tunnel would be connected but attempts to establish the device tunnel would result in failure.

Error 619

If the user tunnel connection is initiated using rasdial.exe or rasphone.exe, the error code returned is 619.

Always On VPN Bug in Windows 10 2004

Always On VPN Bug in Windows 10 2004

Workaround

The workaround for this issue is to either use a single tunnel, or if both user tunnel and device tunnel are required, configure the user tunnel to use the SSTP VPN protocol instead of IKEv2.

Additional Information

Windows 10 Always On VPN Device Tunnel Only Deployment Considerations

Always On VPN Device Tunnel Only Deployment Considerations

Always On VPN Device Tunnel Only Deployment ConsiderationsRecently I wrote about Windows 10 Always On VPN device tunnel operation and best practices, explaining its common uses cases and requirements, as well as sharing some detailed information about authentication, deployment recommendations, and best practices. I’m commonly asked if deploying Always On VPN using the device tunnel exclusively, as opposed to using it to supplement the user tunnel, is supported or recommended. I’ll address those topics in detail here.

Device Tunnel Only?

To start, yes, it is possible to deploy Windows 10 Always On VPN using only the device tunnel. In this scenario the administrator will configure full access to the network instead of limited access to domain infrastructure services and management servers.

Is It Recommended?

Generally, no. Remember, the device tunnel was designed with a specific purpose in mind, that being to provide pre-logon network connectivity to support scenarios such as logging on without cached credentials. Typically, the device tunnel is best used for its intended purpose, which is providing supplemental functionality to the user tunnel.

Deployment Considerations

The choice to implement Always On VPN using only the device tunnel is an interesting one. There are some potential advantages to this deployment model, but it is not without some serious limitations. Below I’ve listed some of the advantages and disadvantages to deploying the device tunnel alone for Windows 10 Always On VPN.

Advantages

Using the device tunnel alone does have some compelling advantages over the standard two tunnel (device tunnel/user tunnel) deployment model. Consider the following.

  • Single VPN Connection – Deploying the device tunnel alone means a single VPN connection to configure, deploy, and manage on the client. This also results in less concurrent connections and, importantly, less IP addresses to allocate and provision.
  • Reduced Infrastructure – The device tunnel is authenticated using only the device certificate. This certificate check is performed directly on the Windows Server Routing and Remote Access Service (RRAS) VPN server, eliminating the requirement to deploy Network Policy Server (NPS) servers for authentication.
  • User Transparency – The device tunnel does not appear in the modern Windows UI. The user will not see this connection if they click on the network icon in the notification area. In addition, they will not see the device tunnel connection in the settings app under Network & Internet > VPN. This prevents casual users from playing with the connection settings, and potentially deleting the connection entirely. It’s not that they can’t delete the device tunnel however, it’s just not as obvious.
  • Simplified Deployment – Deploying the device tunnel is less complicated than deploying the user tunnel. The device tunnel is provisioned once to the device and available to all users. This eliminates the complexity of having to deploy the user tunnel in each individual user’s profile.

Disadvantages

While there are some advantages to using the device tunnel by itself, this configuration is not without some serious limitations. Consider the following.

  • IKEv2 Only – The device tunnel uses the IKEv2 VPN protocol exclusively. It does not support SSTP. While IKEv2 is an excellent protocol in terms of security, it is commonly blocked by firewalls. This will prevent some users from accessing the network remotely depending on their location.
  • Limited OS Support – The device tunnel is only supported on Windows 10 Enterprise edition clients, and those clients must be joined to a domain. Arguably the device tunnel wouldn’t be necessary if the client isn’t domain joined, but some organizations have widely deployed Windows 10 Professional, which would then preclude them from being able to use the device tunnel.
  • Machine Certificate Authentication Only – The device tunnel is authenticated using only the certificate issued to the device. This means anyone who logs on to the device will have full access to the internal network. This may or may not be desirable, depending on individual requirements.
  • No Mutual Authentication – When the device tunnel is authenticated, the server performs authentication of the client, but the client does not authenticate the server. The lack of mutual authentication increases the risk of a man-in-the-middle attack.
  • CRL Checks Not Enforced – By default, RRAS does not perform certificate revocation checking for device tunnel connections. This means simply revoking a certificate won’t prevent the device from connecting. You’ll have to import the client’s device certificate into the Untrusted Certificates certificate store on each VPN server. Fortunately, there is a fix available to address this limitation, but it involves some additional configuration. See Always On VPN Device Tunnel and Certificate Revocation for more details.
  • No Support for Azure Conditional Access – Azure Conditional Access requires EAP authentication. However, the device tunnel does not use EAP but instead uses a simple device certificate check to authenticate the device.
  • No Support for Multifactor Authentication – As the device tunnel is authenticated by the RRAS VPN server directly and authentication requests are not sent to the NPS server, it is not possible to integrate MFA with the device tunnel.
  • Limited Connection Visibility – Since the device tunnel is designed for the device and not the user it does not appear in the list of active network connections in the Windows UI. There is no user-friendly connection status indicator, although the connection can be viewed using the classic network control panel applet (ncpa.cpl).

Summary

The choice to deploy Windows 10 Always On VPN using the device tunnel alone, or in conjunction with the user tunnel, is a design choice that administrators must make based on their individual requirements. Using the device tunnel alone is supported and works but has some serious drawbacks and limitations. The best experience will be found using the device tunnel as it was intended, as an optional component to provide pre-logon connectivity for an existing Always On VPN user tunnel.

Additional Information

Windows 10 Always On VPN Device Tunnel with Azure VPN Gateway

Windows 10 Always On VPN Device Tunnel and Certificate Revocation

Windows 10 Always On VPN Device Tunnel Configuration with Microsoft Intune

Windows 10 Always On VPN Device Tunnel Does Not Connect Automatically

Windows 10 Always On VPN Device Tunnel Missing in Windows 10 UI

Deleting a Windows 10 Always On VPN Device Tunnel

Windows 10 Always On VPN Device Tunnel Configuration using PowerShell

Windows 10 Always On VPN IKEv2 Features and Limitations

%d bloggers like this: