Always On VPN Static IP Address Assignment

A question that occasionally arises when I’m conducting an Always On VPN planning and design workshop for a customer is static IP address assignment options for VPN connections. Typically, the use case is a specific user that requires special access to a sensitive system internally. Assigning a static IP address to the user allows administrators to create firewall rules restricting access to this connection.

Static IP Assignment

Assigning a static IP address to a user is accomplished by editing the properties of their user account in Active Directory. Open the Active Directory Users and Computers console (dsa.msc), navigate to the Dial-in tab on the target individual’s Active Directory user account, and check the box next to Assign Static IP Addresses.

Next, click the Static IP Addresses button, check the box next to Assign a Static IPv4 address, and enter an IP address. Optionally, check the box next to Assign a static IPv6 address and enter a prefix and Interface ID, if required.

NPS Configuration

Once the user account in Active Directory is configured with a static IP address assignment, each NPS server in the organization must be registered in Active Directory. More details on Active Directory registration for NPS servers can be found here.

Caveats

Assigning static IP addresses to VPN users has many drawbacks and limitations. Consider the following.

Device IP

Assigning a static IP address to a device is not supported. You can only assign a static IP address to a user in Active Directory.

Address Assignment

The IP address you assign to the user must be from the same subnet as the VPN server’s internal network interface. If there is more than one VPN server, all VPN servers must be on the same subnet.

Multisite

Assigning static IP addresses to users is not supported when VPN servers are deployed in multiple locations.

Concurrent Sessions

Users with a static IP address assignment must only log on to one device at a time. If a user attempts to log in to multiple devices simultaneously, subsequent connections will fail due to the duplicate IP address assignment.

NPS

Always On VPN administrators may have discovered the option to assign a static IP address using NPS policy. Unfortunately, this option is severely limited. A separate NPS policy is needed for each user that requires a static IP address. However, NPS does not support assigning NPS policies to users, only groups. Technically speaking, you could create a separate group for each user needing a static IP address, but that’s not scalable. Also, it offers no real advantage over using the Active Directory method described above.

Summary

Although it’s possible to assign a static IP address to a user, there is currently no option to assign a static IP address to a device. In addition, static IP address assignment imposes other limitations that make the option challenging. Also, the inability to connect to geographically dispersed VPN servers is severely limiting.

Additional Information

Always On VPN and NPS Active Directory Registration

Always On VPN Client IP Address Assignment Methods

Always On VPN and IPv6

Always On VPN Multisite with Azure Traffic Manager

Always On VPN Multisite with Azure Traffic ManagerEliminating single points of failure is crucial to ensuring the highest levels of availability for any remote access solution. For Windows 10 Always On VPN deployments, the Windows Server 2016 Routing and Remote Access Service (RRAS) and Network Policy Server (NPS) servers can be load balanced to provide redundancy and high availability within a single datacenter. Additional RRAS and NPS servers can be deployed in another datacenter or in Azure to provide geographic redundancy if one datacenter is unavailable, or to provide access to VPN servers based on the location of the client.

Multisite Always On VPN

Unlike DirectAccess, Windows 10 Always On VPN does not natively include support for multisite. However, enabling multisite geographic redundancy can be implemented using Azure Traffic Manager.

Azure Traffic Manager

Traffic Manager is part of Microsoft’s Azure public cloud solution. It provides Global Server Load Balancing (GSLB) functionality by resolving DNS queries for the VPN public hostname to an IP address of the most optimal VPN server.

Advantages and Disadvantages

Using Azure Traffic manager has some benefits, but it is not with some drawbacks.

Advantages – Azure Traffic Manager is easy to configure and use. It requires no proprietary hardware to procure, manage, and support.

Disadvantages – Azure Traffic Manager offers only limited health check options. Today, only HTTP, HTTP, and TCP protocols can be used to perform endpoint health checks. There is no option to use UDP or PING, making monitoring for IKEv2 a challenge.

Note: This scenario assumes that RRAS with Secure Socket Tunneling Protocol (SSTP) or another third-party TLS-based VPN server is in use. If IKEv2 is to be supported exclusively, it will still be necessary to publish an HTTP or HTTPS-based service for Azure Traffic Manager to monitor site availability.

Traffic Routing Methods

Azure Traffic Manager provide four different methods for routing traffic.

Priority – Select this option to provide active/passive failover. A primary VPN server is defined to which all traffic is routed. If the primary server is unavailable, traffic will be routed to another backup server.

Weighted – Select this option to provide active/active failover. Traffic is routed to all VPN servers equally, or unequally if desired. The administrator defines the percentage of traffic routed to each server.

Performance – Select this option to route traffic to the VPN server with the lowest latency. This ensures VPN clients connect to the server that responds the quickest.

Geographic – Select this option to route traffic to a VPN server based on the VPN client’s physical location.

Multivalue – Select this option when endpoints must use IPv4 or IPv6 addresses.

Subnet – Select this option to map DNS responses to the client’s source IP address.

Configure Azure Traffic Manager

Open the Azure management portal and follow the steps below to configure Azure Traffic Manager for multisite Windows 10 Always On VPN.

Create a Traffic Manager Resource

  1. Click Create a resource.
  2. Click Networking.
  3. Click Traffic Manager profile.

Create a Traffic Manager Profile

  1. Enter a unique name for the Traffic Manager profile.
  2. Select an appropriate routing method (described above).
  3. Select a subscription.
  4. Create or select a resource group.
  5. Select a resource group location.
  6. Click Create.

Always On VPN Multisite with Azure Traffic Manager

Important Note: The name of the Traffic Manager profile cannot be used by VPN clients to connect to the VPN server, since a TLS certificate cannot be obtained for the trafficmanager.net domain. Instead, create a CNAME DNS record that points to the Traffic Manager FQDN and ensure that name matches the subject or a Subject Alternative Name (SAN) entry on the VPN server’s TLS and/or IKEv2 certificates.

Endpoint Monitoring

Open the newly created Traffic Manager profile and perform the following tasks to enable endpoint monitoring.

  1. Click Configuration.
  2. Select HTTPS from the Protocol drop-down list.
  3. Enter 443 in the Port field.
  4. Enter /sra_%7BBA195980-CD49-458b-9E23-C84EE0ADCD75%7D/ in the Path field.
  5. Enter 401-401 in the Expected Status Code Ranges field.
  6. Update any additional settings, such as DNS TTL, probing interval, tolerated number of failures, and probe timeout, as required.
  7. Click Save.

aovpn_traffic_manager_multisite_001

Endpoint Configuration

Follow the steps below to add VPN endpoints to the Traffic Manager profile.

  1. Click Endpoints.
  2. Click Add.
  3. Select External Endpoint from the Type drop-down list.
  4. Enter a descriptive name for the endpoint.
  5. Enter the Fully Qualified Domain Name (FQDN) or the IP address of the first VPN server.
  6. Select a geography from the Location drop-down list.
  7. Click OK.
  8. Repeat the steps above for any additional datacenters where VPN servers are deployed.

Always On VPN Multisite with Azure Traffic Manager

Summary

Implementing multisite by placing VPN servers is multiple physical locations will ensure that VPN connections can be established successfully even when an entire datacenter is offline. In addition, active/active scenarios can be implemented, where VPN client connections can be routed to the most optimal datacenter based on a variety of parameters, including current server load or the client’s current location.

Additional Information

Windows 10 Always On VPN Hands-On Training Classes

DirectAccess Manage Out with ISATAP and NLB Clustering

DirectAccess Manage Out with ISATAP and NLB ClusteringDirectAccess connections are bidirectional, allowing administrators to remotely connect to clients and manage them when they are out of the office. DirectAccess clients use IPv6 exclusively, so any communication initiated from the internal network to remote DirectAccess clients must also use IPv6. If IPv6 is not deployed natively on the internal network, the Intrasite Automatic Tunnel Addressing Protocol (ISATAP) IPv6 transition technology can be used to enable manage out.

ISATAP Supportability

According to Microsoft’s support guidelines for DirectAccess, using ISATAP for manage out is only supported for single server deployments. ISATAP is not supported when deployed in a multisite or load-balanced environment.

Not supported” is not the same as “doesn’t work” though. For example, ISATAP can easily be deployed in single site DirectAccess deployments where load balancing is provided using Network Load Balancing (NLB).

ISATAP Configuration

To do this, you must first create DNS A resource records for the internal IPv4 address for each DirectAccess server as well as the internal virtual IP address (VIP) assigned to the cluster.

DirectAccess Manage Out with ISATAP and NLB Clustering

Note: Do NOT use the name ISATAP. This name is included in the DNS query block list on most DNS servers and will not resolve unless it is removed. Removing it is not recommended either, as it will result in ALL IPv6-enabled hosts on the network configuring an ISATAP tunnel adapter.

Once the DNS records have been added, you can configure a single computer for manage out by opening an elevated PowerShell command window and running the following command:

Set-NetIsatapConfiguration -State Enabled -Router [ISATAP FQDN] -PassThru

DirectAccess Manage Out with ISATAP and NLB Clustering

Once complete, an ISATAP tunnel adapter network interface with a unicast IPv6 address will appear in the output of ipconfig.exe, as shown here.

DirectAccess Manage Out with ISATAP and NLB Clustering

Running the Get-NetRoute -AddressFamily IPv6 PowerShell command will show routes to the client IPv6 prefixes assigned to each DirectAccess server.

DirectAccess Manage Out with ISATAP and NLB Clustering

Finally, verify network connectivity from the manage out host to the remote DirectAccess client.

Note: There is a known issue with some versions of Windows 10 and Windows Server 2016 that may prevent manage out using ISATAP from working correctly. There’s a simple workaround, however. More details can be found here.

Group Policy Deployment

If you have more than a few systems on which to enable ISATAP manage out, using Active Directory Group Policy Objects (GPOs) to distribute these settings is a much better idea. You can find guidance for creating GPOs for ISATAP manage out here.

DirectAccess Client Firewall Configuration

Simply enabling ISATAP on a server or workstation isn’t all that’s required to perform remote management on DirectAccess clients. The Windows firewall running on the DirectAccess client computer must also be configured to securely allow remote administration traffic from the internal network. Guidance for configuring the Windows firewall on DirectAccess clients for ISATAP manage out can be found here.

ISATAP Manage Out for Multisite and ELB

The configuration guidance in this post will not work if DirectAccess multisite is enabled or external load balancers (ELB) are used. However, ISATAP can still be used. For more information about enabling ISATAP manage out with external load balancers and/or multisite deployments, fill out the form below and I’ll provide you with more details.

Summary

Once ISATAP is enabled for manage out, administrators on the internal network can remotely manage DirectAccess clients wherever they happen to be. Native Windows remote administration tools such as Remote Desktop, Windows Remote Assistance, and the Computer Management MMC can be used to manage remote DirectAccess clients. In addition, enterprise administration tools such as PowerShell remoting and System Center Configuration Manger (SCCM) Remote Control can also be used. Further, third-party remote administration tools such as VNC, TeamViewer, LogMeIn, GoToMyPC, Bomgar, and many others will also work with DirectAccess ISATAP manage out.

Additional Information

ISATAP Recommendations for DirectAccess Deployments

DirectAccess Manage Out with ISATAP Fails on Windows 10 and Windows Server 2016 

DirectAccess Client Firewall Rule Configuration for ISATAP Manage Out

DirectAccess Manage Out and System Center Configuration Manager (SCCM)

Contact Me

Interested in learning more about ISATAP manage out for multisite and external load balancer deployments? Fill out the form below and I’ll get in touch with you.